|
Scientific paper ID 770 : 2013/1
![]() ON THE DYNAMICS OF AN ELASTIC MATHEMATICAL PENDULUM WITH A MOVABLE SUSPENSION POINT
Stefan Bachvarov1 , Vassil Zlatanov2 , Snejana Atanasova2 The present paper treats an elastic mathematical pendulum with a movable suspension point. The load, which is taken as a point mass, is suspended with a homogeneous, elastic, massless string. The suspension point is fixed at center of a homogeneous disc, which rolls without slipping along a horizontal plane. The disc models a mechanism for moving in a stationary regime of motion. Non-linear mechanics is used to determine the law of motion of the elastic mathematical pendulum and the dynamic loading of the flexible cable.
Еластично математично махало аналитични методи. Elastic mathematical pendulum analytical methods.Stefan Bachvarov Vassil Zlatanov Snejana Atanasova BIBLIOGRAPHY [1] BENDERSKY S., B.SANDLER. Investigation of a spatial double pendulum: an engineering approach, Discrete Dynamics in Nature and Society, (2006), 1-23. [2] BUCKHAM B., F.DRISCOLL, M.NAHON. Development of a finite element cable model for use in low-tension dynamics simulation, Journal of Applied Mechanics, v.71 (2004), 476-485. [3] KUHN A., W.STEINER, J.ZEMANM, D.DINEVSKI, H.TROGER. A comparison of various mathematical formulations and numerical solution methods for the large amplitude a oscillations of a string pendulum, Applied mathematics and computation, v.67 (1995), 227-264. [4] MANUSCO M., F.UBEPTINI. An efficient time discontinuous Galerkin procedure for non-linear structural dynamics, Computer Methods in Applied Mechanics and Engineering, 195 (2006), (44), 6391-6406. [5] MEIJAARD JP. Application of Runge-Kutta-Rosenbrock methods to the analysis of flexible multibody systems, Multibody System Dynamics, v.10 (2003), issue 3, 263-288. [6] POKORNY.P. Continuation of periodic solutions of dissipative and conservative systems: application to elastic pendulum, Mathematical Problems in Engineering, 2009,1-16. [7] TUWANKOTTA J.M., G. R. W. QUISPEL. Geometric numerical integration applied to the elastic pendulum at higher-order resonance, Journal of Computation and Applied Mathematics ,v.154 (2003), issue 1, 229-242. [8] A.H.P. VAN DER BURGH. On the higher order asymptotic approximations for the solutions of the equations of motion of an elastic pendulum, Journal of Sound and Vibration, 42 (1975), 463-475. [9] BACHVAROV ST., V.ZLATANOV, S.NIKOLOV. Dynamics of a traveling crane with load during braking regime, Proceeding of the 11-th National Congress on Theoretical and Applied Mechanics, 1 (2005), 27-33. [10]BATSCTWAROW S. Assymtotische einfrequenzschwingungen eines elastischen mathematischen pendels mit beweglichen auflagen beim resonanz, Ann. of VTUS Applied Mechanics, IV (1970), b.II, 135-143. [11]BRADISTILOV G., G.BOJADZIEV, A.PISAREV. The periodic motions of an elastic mathematical pendulum with a movable suspension point, Ann.of MEI, XIII (1964), b.1, 7-12. [12]BOJADDJIEV G., S.BATSCTWAROW. Assymtotische einfrequenzschwin-gungen eines elastischen mathematischen pendels mit beweglichen auflagen, Ann. of VTUS Applied Mechanics, IV (1967), b.II, 69-82. [13]BOLOTNIK N.N., N.GHIONG. About optimal length of suspended load during the motion of systems based on pendulum, Izvestya Akademii Nauk USSR-Mekhanika tverdovo tela, v.6, (1983), 23-34. [14]MARTYNYUK A.A., N.V.NIKITINA. The Theory of Motion of a Double Mathematical Pendulum, International Applied Mechanics, v.36 (2000), n.9, 1252-1258. [15]ZARAEMBA A.T. Optimal pendulum motion during the phases limit of the point’s suspension velocity, Izvestya akademii nauk USSR-Mekhanika tverdovo tela v.3 (1982), 28-34. [16]BACHVAROV ST., V.ZLATANOV, S.ATANASOVA. Dynamics of an elastic mathematical pendulum with a movable suspension point, Proceeding of the 11-the NCTAM, (2009), 99-58-3-PB. [17]STRIJAK T. Investigation methods of the dynamical systems in the pendulum form, Nauka, Alma-Ata, 1981. [18]KOLEV P., GREKOV P., NEDEV V. Modelirane i izsledvane na dvizhenieto na elementite ot hodovata chast na podvizhen zhelezopaten sastav v holonomna postanovka, Sb. Dokladi ot HІІІ mezhdunarodna nauchna konferentsiya “VSU 2012” Sofiya, 7-8.06.2012, Tom І, s.І107-І112. ( [18]КОЛЕВ П., ГРЕКОВ П., НЕДЕВ В. Моделиране и изследване на движението на елементите от ходовата част на подвижен железопътен състав в холономна постановка, Сб. Доклади от ХІІІ международна научна конференция “ВСУ 2012” София, 7-8.06.2012, Том І, с.І107-І112. ) |