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 Abstract: The present paper treats an elastic mathematical pendulum with a movable 
suspension point. The load, which is taken as a point mass, is suspended with a homogeneous, 
elastic, massless string. The suspension point is fixed at center of a homogeneous disc, which 
rolls without slipping along a horizontal plane. The disc models a mechanism for moving in a 
stationary regime of motion. Non-linear mechanics is used to determine the law of motion of 
the elastic mathematical pendulum and the dynamic loading of the flexible cable. 

 
 1. Introduction 

 Mechanical systems with flexible coupling, and particularly with suspended weights, 
are widely used to automate the key technological, subsidiary, and transport processes in 
industry. The increase of productivity and in turn of the working speeds leads to an increased 
dynamical loading on the elements of these mechanical systems, which requires a thorough 
analysis. Modeling of operation of the mechanical systems with suspended weights can be 
done by a mathematical pendulum with a movable suspension point. Pendulums under various 
assumptions and in various configurations have been subject of many studies and continuing 
into current times. Interest in this problem stems the fact that the elastic pendulum is a very 
rich dynamical system and it can serve as a model for many engineering problems. Among the 
numerous studies used numerical methods we note [1,2,3,4,5,6,7]. Analytical methods to solve 
the differential equations, which describe the systems` motion, were used in 
[8,9,10,11,12,13,14,15,16,17,18]. 
 The aim of this study is to use analytical methods to investigate with higher accuracy 
then [16] the dynamics of mechanical systems with suspended weights, including mechanisms 
used for moving and hoisting, which can be modeled as an elastic mathematical pendulum with 
a movable suspension point. 

 2. Mechanic-mathematical model 

 The mechanical systems with suspended weights, including mechanisms used for 
moving and hoisting, can be modeled as a homogeneous disk, which rolls without slipping 
along a horizontal plane, and its center is the suspension point of an elastic mathematical 
pendulum (Fig. 1). 
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 The dynamic model is based on the following assumptions. The mechanical system is 
discrete. The disc 1 is taken as a homogeneous disc with mass 1m , radius R , and a geometric 

center C, where a load 3 taken as point mass 3m  is attached. The angle of rotation of the disk is 

 . The load 2, taken as a point mass 2m , is attached to an elastic, massless string with a spring 

rate c , which is suspended from a pivot at 
the geometric center of the disc. The load is 
moving in the vertical plane. The length of 
the string at an elastic equilibrium is stl , at an 

arbitrary point in time -  , the angle of 
deviation of the string CA from the vertical 
axis is  . The rotational moment of the 
motor MT , which is applied on the disc, can 

be described with the following formula:                                                                     
 
 
 
        Fig. 1 Dynamic Model 

(2.1)                                            MT a b     

 
which approximates the stable linear portion of the mechanical characteristic curve of the 
asynchronous electric motor during a stationary regime of motion, where a and b are constants. 
The friction forces of motion are denoted with W and include the friction of traveling along a 
horizontal path, the friction of traveling along a slope, the air drag, etc. 
 The dynamic model has three degrees of freedom. The following are generalized 
coordinates: , ,   . The system can be described using three Lagrange equations of the 

second kind: 

(2.2)                      1 2 3, , ,j
j j

d T T
Q q q q

dx q q
  

  
        

. 

Using the aforementioned assumptions and notation, and letting 1 2 3

3

2
M m m m   , we get 

the following result for the kinetic energy T :  

(2.3)         2 2 2 2 2
2 2 2 2

1 1 1
sin cos

2 2 2
T M R m R m R m m                 . 

The mechanical system is non-conservative, which means that the generalized forces jQ  can 

be determined using the formula: 

(2.4)                                 ( 1,2,3)j j
j

Q Q j
q


   


 . 

We get the following result for the potential energy   and the generalized non-potential 

forces jQ : 

(2.5)    2
2 1 2 3

1
cos , , 0, 0

2 st M

m g
c l m g Q T W R Q Q

c
            

 
   . 

Substituting (2.3)-(2.5) into (2.2), we obtain the following system of three nonlinear 
differential equations, describing the motion of the mechanical system with suspended load:  

TM

x

φ

W
→

→
→

→

C

G

G

G
1

2

3

R

3

1

O

y

2 ρ

θ
A

c
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(2.6)

 

2 2
2 2 2 2

2
2 2 2 2

2
2 2 2 2 0

sin 2 cos cos sin ,

cos 2 sin ,

sin cos .

M R m R m R m R m R a b W R

m R m m m g

m R m m m g c l

         

      

     

      

   

    

     

  

 

 

 3. Analytical solution method  

 The choice of the type of the functions in      , ,t t t    is based on the expected 

motion of the mechanical system. We assume that the angular velocity of the disk   oscillate 
around the stationary angular velocity st , and the change in length and the deviation of the 

string happens from a given position, i.e.: 

(3.1)                     , ,stt t t t t t t                       , 

where   is a small positive parameter. 

Substituting (3.1) into (2.6), and considering that  sin sin cos               and 

 cos cos sin              , we get the following form for the first equation from 

(2.6): 

(3.2) 

   
   

     

2
2 2

2

2 2
2

sin cos 2 cos sin

cos sin

sin cos .st

M R m R m R

m R

m R a b W R

              

       

          

   

 

 

               

       

             

  



 

 

We can write for the coefficients of 0 : 

(3.3)                    0st st

a W R
a b W R

b
  

     . 

The second equation from (2.6) can be obtained in the following form: 

(3.4)         
     
    

2

2 2

2 2

cos sin

2 sin cos ,

m R m

m m g

            

             

   

   

             

              

 

 
 

and setting the coefficients of 0  to zero: 2 sin 0m g    . As a result we obtain: 

(3.5)                                        sin 0 0     , 

because 2 0, 0m    and 29,81m sg  . 

We obtain the third equation from (2.6) in the following form: 

(3.6)            
    

   

2

2 2 2

2 0

sin cos

cos sin ,

m R m m

m g c l

           

      

  

  

             

       

 
 

and setting the coefficients of 0  to zero: 2 0cos 0m g c cl     , we obtain: 

(3.7)                                        2
0 st

m g
l

c
    , 

where 0l  denotes the free length of the string and cos 1    from (3.5). 

 We seek the functions      , ,t t t   , using (3.1), (3.3), (3.5), (3.7), in the form of 

power series of the small parameter  : 
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(3.8)         
               
       

0 1 0 1

0 1

, ,

.st st

t t t t t t t t

t l t l t t

       

    

     

    
 

Substituting (3.8) into (2.6), and assuming that the deviations of the string are small, i.e. 
sin  , cos 1  , we can write (2.6) in the following form: 

(3.9)   

 
 
 

2 2
0 0 0 11 12 13 14 15 16

2
2 21 22 23

2 2 2
3 31 32 33

,

,

,

J B C a a a a a a

k a a a

k a a a

         

     

     

       

   

   

       

   

   

 

where we let: 2 2
0 0 0 11 2, , ,J M R B b C a W R a m R      , 

2 2
12 2 13 2, 2a m R a m R    , 2 2

14 2 15 2,st sta m Rl a m Rl   , 2 2
16 2 21,

st

Rm
a m R a

l
   , 

2 2
22 23 31 2, 2 , st

st st

m m
a a a m l

l l
     , 32 2a m R  , 33 2a m ,  2

2

1
1m

m
   - a small 

positive parameter, 2 3
2

,
st

g c
k k

l m
  - natural frequency of the mathematical pendulum 

and the spring-load system.  
 We seek the solution of the first equation from (3.9) by means of the method of the 
small parameter accurate to the first power of  , and the second and third equation applying 
the Lyapunov-Lindstedt method. We expand the square of the natural frequency in power 
series about the powers of  , i.e. 

(3.10)                           2 2 2 2
2 2 1 3 3 1,p k h p k r     , 

Substituting the right side of (3.8) and (3.10) into (3.9) and comparing the coefficients of the 
equal powers of  , we get the following system of equations, which can be used to determine 

the functions      0 1 0, , ,t t t   and the constants 1 1,h r : 

(3.11)      
0 0 0 0 0

2 2
0 1 0 1 11 0 0 12 0 0 13 0 0 14 0 15 0 0 16 0 0 0

,

,

J B C

J B a a a a a a

 

             

 

      

 

       
 

(3.12)      
2

0 2 0

2
1 2 1 1 0 21 0 22 0 0 23 0 0

0,

,

p

p h a a a

 

       

 

    



   
 

(3.13)      
2

0 3 0

2 2 2
1 3 1 1 0 31 0 32 0 0 33 0 0

0,

.

p

p r a a a

 

       

 

    



   
 

 We seek the solution of (3.9) using the following initial conditions: 

(3.14)                  0 0 0 0 0 00, 0 , 0 , 0 , 0 , 0 , 0t                      . 

The initial conditions (3.14) will be satisfied, if the functions      0 1 0, , , ,t t t    satisfy 

the following conditions:  

(3.15)                         

       
       
       

0 0 1 0 0 1

0 0 1 0 0 1

0 0 1 0 0 1

0 , 0 0 , 0 , 0 0 ,

0 , 0 0 , 0 , 0 0 ,

0 , 0 0 , 0 , 0 0.stl

     

     

     

   

   

    

 

 

 

 

 Solving the first equation in (3.11) we get:  
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(3.16)                                    
0

0 0
0 1 2

0

B

J C
C C e t t

B




   , 

where the integration constants 1 2,C C  were determined as: 0 0
1 0 0

0 0

J C
C

B B
 

 
   

 
, 

0 0
2 0

0 0

J C
C

B B


 
  

 
. In a stationary regime of motion M W stT T a b W R    , from 

which we get: 

(3.17)                                        0

0
st

Ca W R

b B
 

   

Assuming that 0 0  , and using the result in (3.17) or (3.3), we get the following result for 

the function  0 t in (3.16) and its derivatives: 

(3.18)                              0 1 t
stt e t 




    , 

(3.19)                           0 0. , . .t t
st e e             , 

where we let 02
, st

b

M R
       . 

 We get the following result for the first equations in (3.12) and (3.13):  
(3.20)                               0 2 2 0 3 3cos , cosA p t A p t   , 

where we let 2 0A   and  3 0 stA l   for the zero initial conditions 0 00 , 0    . 

 We can transform the second equations from (3.12) and (3.13), using the results from 
(3.19) and (3.20), to the following form: 

(3.21)   
 

       

2
1 2 1 1 2 2 21

2
22 2 2 3 2 3 23 2 3 2 3 2 3

cos . .

cos cos sin sin ,

tp h A p t a e

a p A A p t p t a p p A A p t p t

        

 


 

(3.22)  
     

   

2 2 2 2 2
1 3 1 3 1 33 2 2 3 33 2 2 3 2 3

2 2 2 2
31 2 2 31 2 2 2 32 2 2

1 1
cos cos2 cos

2 2

1 1
cos2 . . cos .

2 2
t

p A r a p A p t a p A A p t p t

a p A a p A p t a e A p t

 

 

      
 

   



 

In order to avoid a secular term in the solutions of (3.21) and (3.22), it is necessary that 

1 2 0h A   and 2 2
3 1 33 2 2

1
0

2
A r a p A   
 

. With broadest initial conditions, these conditions 

will be satisfied if 1 0h   and 2 2 2 2
1 33 2 2 2 2 0

1 1

2 2
r a p A m p     . It follows ensues from this 

that: 

(3.23)                2 2
2 2

st

g
p k

l
     ,   2 2 2 2 2

3 3 2 2 0 0
2

1 1

2 2 st

c g
p k m p

m l
      . 

 The solution of (3.22), for zero initial conditions (3.15), by means of a Duhamel 
integral is: 
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(3.24)  

 

   

 

2 2 2 2
1 3 31 2 2 31 2 2 2

3 0

2 2
32 2 2 33 2 2 3 2 3

2 2
33 2 2 3 2 3

1 1 1
sin cos 2

2 2

1
. . cos cos 2

4
1

cos 2 .
4

t

p t a p A a k A p
p

a e A p a p A A p p

a p A A p p d



  

   

 



   

    

  



 

Solving (3.24), substituting the result in (3.8) and using (3.20), we get the following result for 
the function  t , which describes the absolute stretch of the string: 

         

 
   

 
2 2 2
0 0

32 22 2
3 3 2 3 2

. 1 1
1 sin

2 2st

v R
t l p t

p p p p p

   
 

   
      

       
 

          

 
 

2 2 4
20 0

0 0 22 2 2
3 2

. 1
1 2

8 1 1 4 2st st

R
l l

p p

      
  

   
            

 

 
       

22 2
0 00

3 2 2 32 22
3 2

1
cos . cos 2 cos 2

2 1 4 16 1
stst

ll
p t p t p p t

p p

   
 

            

(3.25)         

   
 

2
0 0 0

2 3 22
3 2

. 1
cos 2

16 1 2
tstl R

p p t e
p p

     
 


       

 

            
 

 
   

 2 22 2 22 2 2
33 2 3 2 3 2

1 1 1
cos sinp t p t

pp p p p p p

 
  

        
           

, 

where we let 2

3

p

p
  . It should be note that 21 4 0  , i.e.  

0
2 3 2 2

0

2
0,5.

6

cl
p p m

g 
  


 

and 1 0  , i.e. 0
2 3 2 2

0

2cl
p p m

g
   . 

Given the dynamic model in (Fig.1), the solution in (3.25) shows that the motion of the load 
along the axis C  can be viewed as a superposition of free vibrations, caused by the initial 
conditions and parameters of the system, undamped forced vibrations and damped forced 
vibrations, dependent on the initial conditions. The motion takes place about a constant length 
of the string (the first two addends), which depends on the parameters of the system and on the 
initial conditions of the vibrating system. 
 We can present the solution of (3.21), using (3.20) and zero initial conditions (3.15), as 
the solution to the Duhamel integral: 

(3.26)  
     

   

2
1 2 21 22 2 2 3 2 3

2 0

23 2 3 2 3 2 3

1
sin . . cos cos

sin sin .

t
tp t a e a p A A p p

p

a p p A A p p d

     

  

    

 


 

We substitute the solution of (3.26), for  
0

2 3 2 2
0

2
2

6

cl
p p m

g 
  


, into (3.15) and using 

(3.20), we get the following result for the function  t : 
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(3.27)    

     

     

 

0
0 22 2 2

2

2
0 0

2 2 32 2
2 2

2 3 2 2
2

2. 1
. 1 . cos

1 4

. 1 1
. sin cos

2 1 2

1 . 1
cos .

1 2

st

st st

st

st st

t

st

lR
t p t

l p l

lR
p t p p t

l p p l

R
p p t e

l p


   
 

  
 

 
 



   
        

 
    

 
   

  

The result in (3.27) shows that the deviation of the elastic pendulum is a result of the 
superposition of vibrations with natural frequency 2p , vibrations with frequencies 2 3p p  

and 2 3p p , caused by the initial conditions of the generalized coordinates of the elastic 

mathematical pendulum ( 0 0,  ), and of the suspension point (  ). The last addend in (3.27) 

has a negligible effect because 0te    fast. 
 We can transform the second equation in (3.11), using (3.20), as follows: 

(3.28)    
     

     

0
1 1 11 2 12 2 13 2 3

0

14 2 3 15 2 3 16 2 3

cos cos 3 cos

cos cos 3 cos 3 ,

B
b p t b p t b p p t

J

b p p t b p p t b p p t

      

     

 
 

where we let: 
2

22 2
11 15 2 14

0

1

4

A p
b a A a

J
   
 

, 
2 2
2 2 15

12
04

A p a
b

J
  , 

2 2 22 3
13 13 2 3 11 3 2 12 16 2

0

7

2 4

A A
b a p p a p p a a A

J

         
, 

3 2
16 2 3 2

15
08

a A A p
b

J
   

2 2 22 3
14 13 2 3 11 3 2 12 16 2

0

7

2 4

A A
b a p p a p p a a A

J

          
, 

3 2
16 2 3 2

16
08

a A A p
b

J
  . 

The solution of the canonical differential equation (3.28) with zero initial conditions (3.15) by 
means of the Duhamel integral is: 

(3.29)   

    

        

6

1
10

6

1 1 2 3
1 0

1
1

1
1 cos cos sin ,

t
t

i
i

t
t t

i i i i i i i
i

e q d I

b e d K t K t e K

 

  

  


    


 



  



   

    



 
 

where we let 1 2p  , 2 23 p  , 3 2 3p p   , 4 2 3p p   , 5 2 33 p p   , 

6 2 33 p p   , 1
1 2 2

i
i

i

b
K

 
 


, 2 1i i

i

K K



  , 3 1i iK K  . 

We get the following result for the angular velocity   of the disk, using (3.29), (3.19), and 
(3.8):  

(3.30)      

     
       
        
        

0 11 2 12 2 21 2

22 2 31 2 3 32 2 3

41 2 3 42 2 3 51 2 3

52 2 3 61 2 3 62 2 3

cos sin cos 3

sin 3 cos sin

cos sin cos 3

sin 3 cos 3 sin 3 ,

t
st e A A p t A p t A p t

A p t A p p t A p p t

A p p t A p p t A p p t

A p p t A p p t A p p t
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where 
 

2 26
22 0 0 0

0 3 2 22 2 2
1 2 2

1 0,25 0,25

3
i st

i

m
A K l p

M R p p

     
 

               
  

                           
 

 
 

2 22 2 2 2
2 3 2 0 2 3 2 0

0 2 22 2
2 3 2 3

1,75 1,75
0,5 st

p p p p p p
l

p p p p

 


 

    
    

     
 

                                
   

2 2
2 0 0 2 22 2

2 3 2 3

1 1
0,125

3 3
stp l

p p p p
 

 

    
     

, 

 
2

22 02
11 2 12 02 2

2

1 0.25stm lp
A p K

p M R

  


  


, 

 
2

22 02
12 2 11 2 02 2

2

1 0.25stm lp
A p K p

p M R

 


   


, 

   
 

2 2
2 2 0

21 2 22 22
2

3
3

36 3
st

p m l
A p K

M Rp




  


, 

   
 

2 2
2 2 02

22 2 21 22
2

33
3

36 3
st

p m lp
A p K

M Rp




   


 

 
 

   2 2 22 0 0
31 2 3 32 2 3 2 022

2 3

1
1.75

2
stm l

A p p K p p p
M Rp p

  


        
, 

   
 

   2 2 22 3 2 0 0
32 2 3 31 2 3 2 022

2 3

1
1.75

2
stp p m l

A p p K p p p
M Rp p

 
 


          

, 

 
 

   2 2 22 0 0
41 2 3 42 2 3 2 022

2 3

1
1.75

2
stm l

A p p K p p p
M Rp p

  


        
, 

   
 

   2 2 22 3 2 0 0
42 2 3 41 2 3 2 022

2 3

1
1.75

2
stp p m l

A p p K p p p
M Rp p

 
 


          

, 

 
 

 32
2 0 02

51 2 3 52 22
2 3

3
8 3

stm lp
A p p K

M Rp p

 



   

 
, 

   
 

 32
2 3 2 0 02

52 2 3 51 22
2 3

3
3

8 3
stp p m lp

A p p K
M Rp p

 



 

    
 

, 

 
 

 32
2 0 02

61 2 3 62 22
2 3

3
8 3

stm lp
A p p K

M Rp p

 



   

 
, 

   
 

 32
2 3 2 0 02

62 2 3 61 22
2 3

3
3

8 3
stp p m lp

A p p K
M Rp p

 



 

    
 

. 

 It follows from (3.30) that weak harmonic vibrations are superimposed on the uniform 

motion of the disk, which is determined by st  (3.17). The addend 0
te A  has a weak, short-

term effect on the motion of the disc because 0te    fast. 
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 The laws governing the change of the generalized coordinates, which were derived in 
this paper, can be used to determine and analyze the dynamic load on the string: 

 0F c l  . 

4. Numerical Example 

 The theoretical results derived in this work were used to analyze the motion of an 
overhead traveling crane with a maximum safe working load of 200 kN, moving at a constant 
speed of 25 m/s. 
The following numerical values were used in the experiment:  

1 2 3

0

250,8kg , 200 kg, 5949, 2 kg,

0,16 , W 1216 N , 10 ,

m m m

R m l m

  

  

 
1

0

0 0

246000 N/m, 2,6s ,

0,1rad , 10 m .

c 
 

 

     
 The results, obtained after substituting 
the aforementioned numerical values into the 
analytical solution of the differential 
equations, were compared with the numerical 
solution of the system of differential equations 
(2.6), which was found using a fourth order 
modified Hamming predictor-corrector 
method. The change in angular velocity   is 
shown on fig.2, the deviation of the string 
 on fig.3, the change in length of the string 
on fig.4. 

        Fig.2 Angular velocity  t   

  
 

0 1 2 3 4 50.5 1.5 2.5 3.5 4.5
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.125

-0.075

-0.025

0.025

0.075

t[s]

θ [rad]

numerical solution
approached analytical solution

             

 

0 1 2 3 4 50.5 1.5 2.5 3.5 4.5
9.99

10

10.01

9.995

10.005

10.015

numerical solution approached analytical solution≡

t[s]

ρ [m]

 
Fig.3 Deviation of the string  t                                         Fig.4 Length of the string  t   

 5. Results 

 A dynamic model of mechanical systems with suspended weights, including 
mechanisms used for moving and hoisting, was developed. The dynamic model is discrete with 
three degrees of freedom and includes a homogeneous disc, which rolls without slipping along 
a horizontal plane and whose center is the suspension point of an elastic mathematical 

numerical solution

approached analytical solution

1-

2-

2

1

0 2 4 6 8 10
1 3 5 7 9

2.48

2.52

2.56

2.6

2.5

2.54

2.58

 s-1]

t[s]
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pendulum. The motion of the system can be described using three non-linear differential 
equations, which were derived using Lagrange’s method. The analytical solution to the system 
of differential equations was found using the method of the small parameter with higher 
accuracy then the solution in [16]. Numerical values were substituted into the analytical 
solution in order to analyze the motion of an overhead traveling crane, which is used in 
industry. The results of the experiment show a very good agreement between the analytical 
solution and the numerical solution, which was obtained using a fourth order modified 
Hamming predictor-corrector method. The analytical solution to the system of differential 
equations of motion can be used in different areas of the engineering practice because it is a 
necessary condition for performing qualitative dynamic analysis and for solving dynamic 
synthesis problems. 
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БЪЛГАРИЯ 
 

 Ключови думи: Еластично математично махало, аналитични методи. 
 Резюме: Разглежда се еластично математично махало с подвижна точка на 
окачване. Товарът е представен като материална точка и е окачен на еластична 
безмасова нишка. Точката на окачване е реализирана в центъра на хомогенен диск, 
който се търкаля без плъзгане по хоризонтална равнина. Дискът е модел на механизъм 
за преместване в стационарен режим на движение. Посредством методите на 
нелинейната механика са определени закона на движение на еластичното 
математично махало и динамичното натоварване на гъвкавата връзка. 


