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Abstract: The present paper treats an elastic mathematical pendulum with a movable
suspension point. The load, which is taken as a point mass, is suspended with a homogeneous,
elastic, massless string. The suspension point is fixed at center of a homogeneous disc, which
rolls without slipping along a horizontal plane. The disc models a mechanism for moving in a
Stationary regime of motion. Non-linear mechanics is used to determine the law of motion of
the elastic mathematical pendulum and the dynamic loading of the flexible cable.

1. Introduction

Mechanical systems with flexible coupling, and particularly with suspended weights,
are widely used to automate the key technological, subsidiary, and transport processes in
industry. The increase of productivity and in turn of the working speeds leads to an increased
dynamical loading on the elements of these mechanical systems, which requires a thorough
analysis. Modeling of operation of the mechanical systems with suspended weights can be
done by a mathematical pendulum with a movable suspension point. Pendulums under various
assumptions and in various configurations have been subject of many studies and continuing
into current times. Interest in this problem stems the fact that the elastic pendulum is a very
rich dynamical system and it can serve as a model for many engineering problems. Among the
numerous studies used numerical methods we note [1,2,3,4,5,6,7]. Analytical methods to solve
the differential equations, which describe the systems’ motion, were used in
[8,9,10,11,12,13,14,15,16,17,18].

The aim of this study is to use analytical methods to investigate with higher accuracy
then [16] the dynamics of mechanical systems with suspended weights, including mechanisms
used for moving and hoisting, which can be modeled as an elastic mathematical pendulum with
a movable suspension point.

2. Mechanic-mathematical model

The mechanical systems with suspended weights, including mechanisms used for
moving and hoisting, can be modeled as a homogeneous disk, which rolls without slipping
along a horizontal plane, and its center is the suspension point of an elastic mathematical
pendulum (Fig. 1).
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The dynamic model is based on the following assumptions. The mechanical system is
discrete. The disc 1 is taken as a homogeneous disc with mass m,, radius R, and a geometric

center C, where a load 3 taken as point mass m, is attached. The angle of rotation of the disk is
@ . The load 2, taken as a point mass m, , is attached to an elastic, massless string with a spring

rate ¢, which is suspended from a pivot at
the geometric center of the disc. The load is
moving in the vertical plane. The length of
the string at an elastic equilibrium is /, at an

arbitrary point in time - p, the angle of
deviation of the string CA from the vertical
axis is 6. The rotational moment of the
motor 7),, which is applied on the disc, can

be described with the following formula:

Fig. 1 Dynamic Model
2.1) T, =a—b¢

which approximates the stable linear portion of the mechanical characteristic curve of the
asynchronous electric motor during a stationary regime of motion, where a and b are constants.
The friction forces of motion are denoted with  and include the friction of traveling along a
horizontal path, the friction of traveling along a slope, the air drag, etc.

The dynamic model has three degrees of freedom. The following are generalized
coordinates: @, p,0. The system can be described using three Lagrange equations of the

second kind:

d(er) or
22 I L T —0.q.=0.q.=p).
(2.2) dx(an %, 0, (9, =9.9,=0.,9,=p)

3
Using the aforementioned assumptions and notation, and letting M = Eml +m, +m,, we get
the following result for the kinetic energy 7 :
1 . . » | | :
(2.3) T = EM R*¢* + m,Rppsin O + msz¢9c0s0+Em2p2 +Em2p26’2 .

The mechanical system is non-conservative, which means that the generalized forces Q/ can

be determined using the formula:

oIl ~
24 Q,~=—a—+Qj (/=12,3).
q.;

J
We get the following result for the potential energy Il and the generalized non-potential

forces Qj :

1 ~ ~ ~
(2.5) H:EC(/)—I‘W+ngj—m2gpcost9, 0=T1,-WR, 0,=0, 0;=0.

Substituting (2.3)-(2.5) into (2.2), we obtain the following system of three nonlinear
differential equations, describing the motion of the mechanical system with suspended load:
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MR*$+m,R psin 0+ 2m2Rp6'?cos6?+m2R,0¢§cosc9—1712R,0492 sinf=a—-bp—-W R,
(2.6) m,Rpcos @+ m,p* 6+ 2m, ppé =—m,g psin 6,
m,R@sin 0+ m, p—m,p0* =m,gcosd—c(p-1,).
3. Analytical solution method

The choice of the type of the functions in qo(t),@(t), ,o(t) is based on the expected

motion of the mechanical system. We assume that the angular velocity of the disk @ oscillate
around the stationary angular velocity @, , and the change in length and the deviation of the

string happens from a given position, i.e.:
Gl p()=og+4y(t), 0()=0+u'7'(t), p(t)=p +u' (),
where 4 is a small positive parameter.

Substituting (3.1) into (2.6), and considering that sin(¢9* + y'n') ~sin@" + u'n'cosd” and
COS(H* + ,u'f]') ~cosO — u'n'sin@", we get the following form for the first equation from
(2.6):
M R* 17’ + m,R ,u’f'(sin 6" + u'n' cos” ) + 2m2R,u'f’,u'7?'(cos 0" — 1'n'sin 49*) +
(3.2) +m,R(p* +,u'§')y7'7"(cos 6" — 1'n'sind’ ) -
—myR(p*+p'EVu"*n" (sin 0" + 1/'n’' cos 9*) =a-b(w,+u'y')-WR.
We can write for the coefficients of £'*:

(3.3) a-bo,-WR=0= o, =a_bWR.

The second equation from (2.6) can be obtained in the following form:

mzR(p* + ,u'é'),u'l/?'(cos 6" — 1'n'sin 9*)+ m, (p* + ,u’§’)2 i+
+2m, (p* + ,u'f’),u’f’,u’ﬁ’ = —ng(p* + y’i')(sin 6" + u'n'cos H*),
and setting the coefficients of £’ to zero: m,gp sin@ =0. As a result we obtain:
(3.5) sin@"=0=6"=0,

because m, =0, p* # 0 and g =9,81m/s .

(3.4)

We obtain the third equation from (2.6) in the following form:

5 mzRy'l/?'(sin 0" + u'n' cos 49*)+ myu' &' — mz(,O* + ﬂ'f’)(ﬂ"?')z =
' :m2g(cos9* —,u’f]'siné’*)—c(p* +u'§'—lo),

and setting the coefficients of £’ to zero: m,gcos@ —cp” +cl, =0, we obtain:

3.7) pl=t,+ 28 o
C

st

where /; denotes the free length of the string and cos@” =1 from (3.5).
We seek the functions (o(t),é’(l),p(t), using (3.1), (3.3), (3.5), (3.7), in the form of

power series of the small parameter z:
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o(t)=w()=w, (O)+uy (), O@t)=n(t)=n,(t)+umn (1),
p(t)=1,+E(0)=1,+& (1) + 1 & (1).

Substituting (3.8) into (2.6), and assuming that the deviations of the string are small, i.e.
sinf = @, cos@ =1, we can write (2.6) in the following form:

JW + By =C, +ﬂ(a117792+a127'7'§+a137.7€é+a147.7.+a1577772 +a1677772§)a
(3.9) 77+k2277 = ,U(azﬂﬁ +a22ij§+a2377§),
§+kjE :,U(a31772 +a32771/'/'+a33§7'72),

(3.8)

2 2
where we let: Jo=MR ,B,=b,C,=a-WR, a,=-m,R,
Rm
_ 2 _ 2 _ 2 _ 2 _ 2 _ 2
a12_ m2 R’al3_ 2m2 R’ a14_ mZ Rlst’aIS_mZ Rlsl’ al6_m2R’a21 l 4
st
m m
__my _ M __ _ _ i
Uy ==,y = 2—2 a,=m,l,, a, =—-mR, a;=m,, p=— (m, >1)- a small
st st 2

positive parameter, k, = /ZE k= /mi - natural frequency of the mathematical pendulum
st 2

and the spring-load system.
We seek the solution of the first equation from (3.9) by means of the method of the
small parameter accurate to the first power of £, and the second and third equation applying

the Lyapunov-Lindstedt method. We expand the square of the natural frequency in power
series about the powers of 1, i.e.

(3.10) p =k +hu . pl=kl+nu,
Substituting the right side of (3.8) and (3.10) into (3.9) and comparing the coefficients of the
equal powers of 1, we get the following system of equations, which can be used to determine

the functions (t),t//1 (t),?]o (t),. .. and the constants /2, , 7;:
JWy + By, =G,

(3.11) . ) . . . . . .
JoW, + By, = a,1n,&, + a1, S + a1, Sy + a1, + a157707702 + a167707702 o>
.o + 2 :0)

Gay TP o y
T+ oy =gy + ay Y + a1 Sy + ay Sy s
E 4 plE =0

(3.13) 50 Ds fo

51 + Py = RE Fay Ty ani W, +an i,
We seek the solution of (3.9) using the following initial conditions:
3.14)  t=0,0(0)=¢,,¢(0)=w,,0(0)=6,,6(0)=6,,p(0)=p,,2(0)=p,
The initial conditions (3.14) will be satisfied, if the functions Wo( ) l//l( ) 7N ( ) , satisfy

the following conditions:

v, (0)=0, . ¥, (0)=0,,(0)=a, ,y,(0)=0,
(3.15) o (0):909771( ) 0, 7 O):Ho ’771( ) 0,
50( ) wagl( ) 950( ) pO’é:l( ):

Solving the first equatlon in (3.11) we get:
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B o
(3.16) w,=C +C,e ’°z+F°t,

0

. . . Jo [ C
where the integration constants C,, C, were determined as: C, =g, —EOEBTO—CUO ,
0 0

B,\ B

0 0
which we get:

J,[ C
C,= —0(—0— 0)0]. In a stationary regime of motion 7,, =7, = a—bw,=WR, from

-WR C
(3.17) o, =12 =0
‘ b B,
Assuming that ¢, =0, and using the result in (3.17) or (3.3), we get the following result for
the function v/, (t) in (3.16) and its derivatives:

(3.18) v, () :—A/I—a’(l—e‘“)m)nz,
(3.19) v, =, -Aoe™, j, =l Awve ™,

where we let 4 = s Ao=0,-0,.

We get the following result for the first equations in (3.12) and (3.13):
(3.20) 1, = A, co8(p,t) , & = Ascos(pst),
where we let 4, =6, and A4, = p, —1,, for the zero initial conditions 6, =0, p, = 0.

We can transform the second equations from (3.12) and (3.13), using the results from
(3.19) and (3.20), to the following form:

(3.21) 7, + py’n, = b A, cos( p,t) +a, AAw.e ™ —
' —ay, p," A, 4, cos( p,t)cos(p,t) + ay, p, ps 4, Aysin( p,t)sin( p;t),

. 1 1
E+plé= A{r1 +—a,p,’ Afjcos(pg) ——ay, p,° 4, A, c082( p,t)cos( pt)+
(3.22) 2 2
+ %a“pzz/lzz —%aﬂpzzflz2 cos2(p,t)+a,e ' AAw.A, cos( p,t).

In order to avoid a secular term in the solutions of (3.21) and (3.22), it is necessary that

1
h A, =0 and A{r1 +§a33 p22A22j =0. With broadest initial conditions, these conditions

1
will be satisfied if 4, =0 and 7 = —EaB P, oA = —Emz p226’02_ It follows ensues from this
that:
1 c 1
(3.23) P =k’ = 15 copy =k =m0 = —515902 :

st 2 st
The solution of (3.22), for zero initial conditions (3.15), by means of a Duhamel
integral is:
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1 ¢ . 1 1
& :p_3'([smp3 (t—r)[5a31p22A22 —EczSIchAz2 cos2 p,7+

|
(3.24) +a,e " AAw.A, cos(p,T) - 40 p,> 4; A;cos(2p, — py)7—

1
—Za33 P, A A, cos(2p, + p, )T}dl’.

Solving (3.24), substituting the result in (3.8) and using (3.20), we get the following result for
the function p(t) , which describes the absolute stretch of the string:

0:v' ) RO Aw 1 1
ot =lst[1+ . j— . + sin( pyt )+
( ) 2 2p, ﬂ2+(p3—p2)2 /12+(p3+p2)2 ( ’ )

2 2 4
[(Po‘%) 1+6’L 1% : +29021St 1% 2+RHOZ.A0) 1-v .
8 1—-v 1-4v 2 ﬂz+(p3—p2)

2 2 2 _
I+v 2] cos(p3z‘)——l"’€° i cos(2p2t)+0°(p° L) v cos(2p, + p, )t —

2 +(ps+py) 2 1-47 16 1+v
2 _ —
0 (p—L,) v cos(2p2—p3)t—e‘“R0°2'Aa) { : 1-v .
529 16 1-v 2 2 +(ps—p,)
+— Lty 5 COS(pzl‘)-l-i . 1 7T ! 7 [sin(pat) f
A +(p;+p,) | A +(pi—p,) A +(pitp,)
where we letV:&.It should be note that 1 —4v> # 0, i.e. p2;1&0,5.p3:>mz;tL°2
D g(6+90 )

2cl,
>
0
Given the dynamic model in (Fig.1), the solution in (3.25) shows that the motion of the load

along the axis Cp can be viewed as a superposition of free vibrations, caused by the initial
conditions and parameters of the system, undamped forced vibrations and damped forced
vibrations, dependent on the initial conditions. The motion takes place about a constant length
of the string (the first two addends), which depends on the parameters of the system and on the
initial conditions of the vibrating system.

We can present the solution of (3.21), using (3.20) and zero initial conditions (3.15), as
the solution to the Duhamel integral:

and 1-v#0,ie. p, #p, =>m, #

1. -
526) £ = p—J-smp2 (¢ —T)[azll.Aa).e " —ay, p," 4, A,cos( p,7)cos(p,7)+
. 20

+a,, p, pyA, Aysin(p,7)sin( p, T)] dr.

cl,
2

We substitute the solution of (3.26), for 2 p, # p, => m, #
g(6 + 6, )

, into (3.15) and using

(3.20), we get the following result for the function 49(t) :
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e(t):{R’i'A‘”. 1 2+90[1_p0—1“ V(Z—l;)j:|cos(p2t)_

I, A +p [, 1-4v
RAVAw 1 . vOy(py—1L,) 1
3.27 - . sin( p,t)— . cos(p, — p; )t +
27 e e r e v )
+ ! cos(p, + p; )t [—e Rido 1
L4y P2 TP I, A+p;

The result in (3.27) shows that the deviation of the elastic pendulum is a result of the
superposition of vibrations with natural frequency p,, vibrations with frequencies p, — p,

and p, + p,, caused by the initial conditions of the generalized coordinates of the elastic

mathematical pendulum (6, , p, ), and of the suspension point (A®). The last addend in (3.27)

has a negligible effect because e ** — 0 fast.
We can transform the second equation in (3.11), using (3.20), as follows:

.. B, .
(3.28) Vi +J_OV/1 = b, cos(p,t)+b, cos(3p,t)+b;cos(p, —p; )t +
' 0

+b, c0s(p, + py )t +bsco8(3p, — p, )t + b cos(3p, + py )t

4,p;(1 2 > pia
where we let: b, =22 —a, 4, —a,, |, b,=—""",
J, \ 4 4J,
4,4 7 a, A A, p;
b, = 2J03 a; P, Ps —a“p32 _p22 a, _ZalsAzz , bys :_%

A 7 a, A A p2
14 :_1‘212J03 {anpzpz +a11p32 +p22(a12 _Zal()Azzj}’ b16 :_% .

The solution of the canonical differential equation (3.28) with zero initial conditions (3.15) by
means of the Duhamel integral is:

1 A= J
(3.29) o -
= Z%Ibli (1 —e ) )cos(al.r)dr =K, cos(a,1)+ K, sin(e,t)+e 'K, ,
i=1 0

where we let a,=p,, @, =3p,, a=p,—-p;, A=p,+p;, A& =3p,—p;,

bli ﬂ
s =3p,+p;. K, = _m’ K, = _;iKil’Kﬁ =-K;.
We get the following result for the angular velocity @ of the disk, using (3.29), (3.19), and
(3.8):

w=aw,+e " 4+ A, cos(p,t)+ A, sin(p,t)+ A4, cos(3p,t)+
+ 4, 8in(3p,t) + 4y, cos((p2 —p3)t)+A32 sin((p2 —p3)t)+
+ 4, cos((p2 +p3)t)+ A, sin((p2 +p3)t)+/151 cos((3p2 —p3)t)+
+ A, sin((3p2 —p3)t)+ A, cos((3p2 +p3)t)+A62 sin((3p2 +p3)t),

(3.30)

VII-16



6 5 )
T
=l +p, +(3p,

40 5(,0 _J ){(pz — D )2 + 1975p22002 n (pz +p; )2 "‘1575!722902 } .
H 0 st
124'(}92—]73)2 /12+(p2+p3)2
_031251722902 (:00 _lst)|: 1 7t 1 }}’

/12+(3p2_p3) /?'2+(3p2+p3)2

2
D, mzlszeo 2
A4, = K.,=21 1+0.256,%),
u = HP R A+ p)} MR( ")

2

P, mzlsteo
A+p° MR
A (3]92 )2 m,!

2
2 steo

364+(3p,) MR

_3p2 (3}72 )2 mzlstgoz
36 2 +(3p,) MR

A, =—pup, K, =p, <1+0'25902)9

4, = ﬂ(?’pz )Kzz =

3

4, = —,u(3p2 )KZI =

A = 4P = P ) :gzz +(p12 -p,) mZ(/j\ZelSt)eo[(pz -p) +1'75p229°2}

Ao =—p(p2 =P )K= 2 ;p3) JE +(p1 -p) mZ(/;\;_zt}t)Ho (.= p) +175p.6) |
)= Ps

Ay = u(p,+ py)K, :%/12 +(p12 o mz(/j&;els,)eo[(pz +p,) +1.75p22902],

Ao =Pt p:)Ka = 2 ;pg) 2 +(p1 +p,) mz(’;&;“)eo[(pz +p) +175p6] |
)+ D

Ay =u(3p, - py)Ks, = —%22 +(£;:_p3)2 mze‘)z\(f]‘;_l”) :

=0y =P AR

=l R = L)

Gptr)  p’ m6; (py=1,)

Ao =-u(3p,+p;)Kg =~ 8  2+(3p,+p,) MR

It follows from (3.30) that weak harmonic vibrations are superimposed on the uniform
motion of the disk, which is determined by @, (3.17). The addend e * 4, has a weak, short-

term effect on the motion of the disc because e * — 0 fast.
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The laws governing the change of the generalized coordinates, which were derived in
this paper, can be used to determine and analyze the dynamic load on the string:

F=c(p-1,).
4. Numerical Example

The theoretical results derived in this work were used to analyze the motion of an

overhead traveling crane with a maximum safe working load of 200 kN, moving at a constant
speed of 25 m/s.
The following numerical values were used in the experiment:

m, =250,8kg, m, =200kg, m, =5949,2kg,
R=0,16m, W=1216N, [, =10m , 26 -

¢=246000N/m, @, =2,6s" ,

6,=-0,1rad , p,=10m. 2.56—
The results, obtained after substituting

the aforementioned numerical values into the 2547 - = Y S
analytical solution of the differential /
equations, were compared with the numerical 252
solution of the system of differential equations

(2.6), which was found using a fourth order 55 LY 4 (L
modified Hamming predictor-corrector | 1-numerical solution LT |
method. The change in angular velocity @ is | 2-3pprogched analytical solution
. . . 2.48 T T | T | T |
shown on fig.2, the deviation of the string 1 N 5 7
) . 0 2 4 6 8 10
@ on fig.3, the change in length of the string
on fig.4.
Fig.2 Angular velocity o = a)(t)
05— = o T T T T PIMTL
g[rad] 10.015 Il e d Bl
0.075 _ X 10.01 ‘ ‘
0.05 INC AN ‘ ‘ | | I || || ‘
0.025
o— L L L0 10.005 — il | |
KA i
0.05 — (772 N O T T T R 10 L ‘
0075 | T T T T T O O
0.1 -+-"1 A S ical solution 9.995 -|— numerical solution =approached analytical solution |
. e [ e A e e e
0.125
- Y Y R S N B R .
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
Fig.3 Deviation of the string 6 = 60(¢) Fig.4 Length of the string p = p(7)
5. Results

A dynamic model of mechanical systems with suspended weights, including
mechanisms used for moving and hoisting, was developed. The dynamic model is discrete with
three degrees of freedom and includes a homogeneous disc, which rolls without slipping along
a horizontal plane and whose center is the suspension point of an elastic mathematical
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pendulum. The motion of the system can be described using three non-linear differential
equations, which were derived using Lagrange’s method. The analytical solution to the system
of differential equations was found using the method of the small parameter with higher
accuracy then the solution in [16]. Numerical values were substituted into the analytical
solution in order to analyze the motion of an overhead traveling crane, which is used in
industry. The results of the experiment show a very good agreement between the analytical
solution and the numerical solution, which was obtained using a fourth order modified
Hamming predictor-corrector method. The analytical solution to the system of differential
equations of motion can be used in different areas of the engineering practice because it is a
necessary condition for performing qualitative dynamic analysis and for solving dynamic
synthesis problems.
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3A IMHAMUKATA HA EJJACTUYHO MATEMATHYHO MAXAJIO C
HOABUKHA TOYKA HA OKAYBAHE

1 2 2
Credan bbruBapos , Bacuia 3unarano” , CHexkana ATaHacoBa
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"Texnuuecku Ynueepcumem-Cogua,
ZYHusepcumem no Xpanumennu Texnonozuu-Ilnosous,
BBbJITAPUA

Knwuosu Oymu Enacmuuno mamemamuuno maxanino, AHaiumudHu Memoou.

Peztome: Paszenescoa ce enacmuuno MamemamuyHo MAxdio ¢ NOOBUNCHA MOYKA HA
oKaueaHe. Toeapbm e npedcmaeeﬂ Kamo mamepuaiia modka u e OKa4eH Ha eaacmuyvHa
bezmacosa nuwika. Toukama Ha okaueéaue e peanusupana 6 yermvpa HAd XOMOZEHEH 0ucz<,
Koumo ce mvpKai be3 nav3eame no XOpu3oHmaiHa pasHurd. ﬂucm;m e Mooel Ha MexaHu3om
3a npemecmedne 6 CnmayuoOHapeH pesicum Ha osudicenue. Hocpedcmeom Memooume Ha
HeluHeluHama Mexanuka ca onpe()eﬂenu 3aKOHA Ha OBUdICeHUe Ha  enacmuyHomo
MamemamuytHo Maxaio u OUHAMUYHONO HamoeapeaHe Ha cveKaeama 6Pv3KdA.
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