|
Научен доклад ID 1212 : 2015/3
НЕЛИНЕЙНА ДИНАМИКА НА ТЕЧЕН ЖИРОСКОП
Светослав Николов, Наталия Недкова В тази статия беше изследвано динамичното поведение на система от три нелинейни ОДУ описващи поведението на течен жироскоп. От извършения анализ и симулации (за специфичен избор на параметрите) става ясно, че равновесните състояния са три - от тип седло и седло-фокус, а трептенията са условно разделени на две нива – „макро” и „микро”. Промяната на параметъра води до изменение на периода на трептенията на „макро” ниво.
нелинейна динамика течен жироскоп качествен и числен анализnonlinear dynamics fluid (liquid) gyroscope qualitative and numerical analysisСветослав Николов Наталия Недкова BIBLIOGRAPHY [1] Bardin B., On the orbital stability of pendulum-like motions of a rigid body in the Bobylev-Steklov case, Regular and Chaotic Dynamics, 15(6), 704-716, 2010. [2] Han Zh., Wang S., Multiple solutions for nonlinear systems with gyroscopic terms, Nonlinear Analysis, 75, 5756-5764, 2012. [3] Bachvarov S., V. Zlatanov, Ob opredelenii vektora uglovogo uskorenia absolutno tverdova tela, Teoria mehanizmov i mashin, 1(9), pp. 71-80, 2007 (in Russian). [4] Bachvarov S., V. Zlatanov, Kinematicheskie invarianti i razpredelenie skorostei pri naibolee obshtem dvijenii tverdogo tela, Teoria mehanizmov i mashin, 2(14), pp. 49-60, 2009 (in Russian). [5] Panchev S. Theory of Chaos. Sofia, Bulgarian Acad. Press, 2001. [6] Nikolov S., Regular and chaotic behaviour of fluid gyroscope, Comptes rendus de l’Academie bulgare des Sciences, Tome 57, No 1, pp. 19-26, 2004. [7] Obukhov A., Nileneinie sistemi gidrodinamicheskogo tipa, Nauka, Moskva, 1974. [8] Obukhov A., Ob integralnih invariantah v sistemah gidrodinamicheskogo tipa, 184(2), pp. 309-312, 1969 (in Russian). [9] Sonechkin D. Stohastichnost v modeliah obschei circulacii atmosver, Gidrometeozdat, 1984 (in Russian). [10] Euleri L. Theoria Motus Corporum Solidorum seu Rigidorum. Griefswald, A. F. Rose, 1785, or Euleri L. Opera Omnia Ser. 2 Teubner, 3, 1948 and 4, 1950. [11] Bautin N, Behavior of dynamical systems near boundary of stability. Nauka, Moscow, 1984 (in Russian). [12] Matlab, The MathWorks Inc., Natick, MA, 2010. |