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Abstract: The article examines the dynamic behavior of a system of three nonlinear 

Ordinary Differential Equations describing the behavior of a liquid gyroscope. Our analysis 
and simulations (with specific choice of parameters) demonstrates that the equilibrium states 
are three – of saddle and saddle-focus type, and the oscillations are conditionally divided into 
two levels – "macro" and "micro" level. Changing the parameter 3f  leads to modification of 

the period of the oscillations of the "macro" level. 
 

1. INTRODUCTION 
In recent years, increasing attention has been focused on the nonlinear dynamics of 

mechanical systems, including those associated with rigid body motion (gyroscope) [1-4]. 
One way to identify the dynamic changes of a system, and the strategies that may be used to 
address those changes, is to build models and explore their bifurcation behavior. 
 Chaos theory has been developed and chaos thoroughly studied over the past two 
decades. A chaotic system is a nonlinear deterministic system that displays complex, noisy-
like and unpredictable behavior. The sensitive dependence upon an initial condition and on 
the system’s parameter variations is a prominent characteristic of chaotic behavior [5, 6]. 

Dissipative systems are a special class of dynamical systems. In general, dissipative 
mechanical systems in more than two dimensions have bounded and unbounded orbits 
depending on the energy. The bounded trajectories of these systems do not converge to an 
equilibrium point or to a periodic or quasi-periodic orbit. In this case the flow is essentially 
aperiodic. A dynamical system is dissipative, if its phase volume contracts continuously, i.e 

 .,...,10 niDi   Only dissipative dynamical systems have attractors.  

 The idea for description of real hydrodynamic phenomena was firstly well developed 
by 1974, by Obukhov [7, 8]. It will be mentioned that Obukhov is the first who used the 
concept “system of hydrodynamic type” for square-nonlinear dynamic system with small 
number of degrees of freedom. This system has similar hydrodynamic invariants (invariants 
about the energy), which save the phase volume [9].  
 Let us consider the equation of a vortex 
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dimensional un-viscosity flow of homogeneous unbended fluid in the plane  yx, . Here the 
function of current   is bi-periodic for any time t, i.e.  
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In this domain, the functions of the Laplace operator  2  are trigonometric about the 

argument  nlymkx  , where Znm ,  and 2222 lnkm  . 
 The trigonometric functions can be used as a basis in the field spectral decomposition 
of  . Hence we have 
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where  tamn  and  tbmn  are unknown functions. After substitution of (3) into (1) and 

accomplishing integration, we obtain the flow equations in different domains. These 
operations are well-known as Galerkin transformations. Thus, the infinity dimensional system 
from ordinary differential equations for spectral coefficients  mnmnmn bac ,  is obtained. It is 

seen that the new system is a square-nonlinear, i.e. 
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where  2211 ,,,,, nmnmnmk  are coefficients of nonlinear interaction. Here, we note that for a 
real investigation of system (4),a finite number of coefficients must be taken, as the minimal 
number is three. Hence, the nonlinear interaction between different components in (3) can be 
“caught”.  
 Consider, for example, kxlygkxflya sinsincoscos  . Thus, we have 
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where fkFalArqp 22 ,,0   and  glkG 22

2

1
  are the spectral coefficients 

of 2 . The equations (5) have minimal number of degrees of freedom, which are necessary 
for the investigation of (1). Also, the equations (5) can be integrated exactly in Jacobian 
elliptical functions. According to [5, 9], the specific model exists, for which all particular 
solutions can be described from the three-fence (5) – triple. The free fluid motion here is 
inside of an ellipsoid with linear velocities. In this case, the form of the equations is 
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equivalent with those of Euler for rigid body motion with one fixed point (gyroscope) [10]. 
Hence, the three-fence (5) is called hydrodynamic (fluid) gyroscope [5, 6, 9].  

 In this paper we consider the set of coupled equations 
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for real functions x(t), y(t) and z(t), where the overdot denotes differentiation with respect to 
the time-like independent variable t, and the coefficients a to d and  31ifi . When the 

relations 
   0,0,0,0,0,0  ifbcdacaddca ,   (7) 

are valid, the system (6) presents the motion of a fluid gyroscope with dissipation [5, 9]. Here, 
we give an existence of the results obtained in [5, 6, 9]. 

The paper is organized as follows: in Section 2 and 3 we present analytical and numerical 
results concerning the system (6) behavior for different values of bifurcation (control) 
parameters if . In Section 4 we discuss and summarize our results. 

 
2. QUALITATIVE ANALYSIS 
 In this section, we investigate the system (6), which presents an autonomous nonlinear 
3D dynamical model. According to [6], for 0,0 21  ff  and 03 f , the equilibrium (steady 

state) points of system (6) are: 
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 In order to determine the character of the fixed points (Eq. (8)) we make the following 
substitutions into (7) 
   .,, 321 xzzxyyxxx         (9) 
 

Hence, after some transformations the system (6) has the form 
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where 
   .,,,,, 654321 xdcydcxcczccyaczac    (11) 
 

According to [11], the Routh-Hurwitz conditions for stability of fixed points (8) can be 
written in the form 
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Here the notations rqp ,,  and R  are taken from [11]. The divergence of the flow (11) is 
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The system (11) is always dissipative and has attractor because 03 D  for 0b . 

 The characteristic equation of the system (11) (which is equivalent of (6)) can be 
written as 
   .023  rqp        (16) 
 For  

5.15,01.0,005.0,1.0,003.0,095.0 21  ffdcba , 5.03 f   (17) 
 

the number of equilibriums and their eigenvalues are given by: 
 

  9931.6,0845.0,0357.221 O , then    3713.0,1835.11812.0,, 321  i - saddle-focus 

  2574.5,1961.0,3098.292 O , then    0094.0,6532.10002.0,, 321  i - saddle- 

                                                                                                                                              focus 
  0,7.5136,0004.03 O , then    003.0,6019.112,6079.112,, 321  - saddle 
 

These fixed points can be included in homoclinic and heteroclinic structures with two and 
three equilibriums, where their invariant manifolds SW  and UW  are meeting each other in a 
most intricate manner. 
 
3. NUMERICAL ANALYSIS 
 In the previous section, we have obtained and shown some analytical results that we 
shall use in our numerical analysis of system (6). The corresponding values of the 
dimensionless system parameters are as those in (17), where 51.0;4.03 f . The governing 

equations of system (6), were solved numerically using MATLAB [12]. 
 In Figures 1 and 2 the solutions of system (6) are shown. For 4.03 f  the system has 

monotone “macro” dynamics (see the left panels) and periodic (with period one and two) 
“micro” dynamics (see the right panels). On the other hand, for 51.03 f  the system has 

periodic “macro” dynamics with period one, as the form of the “micro” dynamics is the same 
with the case for 4.03 f . 
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Figure 1. Macro (left panels) and micro (right panels) dynamics of system (6) for a=0.095,  
                b=0.003, c=-0.1, d=0.005, f1=0.01, f2=15.5, f3=0.4. 

       

       
Figure 2. Macro (left panels) and micro (right panels) dynamics of system (6) for a=0.095,  
                b=0.003, c=-0.1, d=0.005, f1=0.01, f2=15.5, f3=0.51. 
 

From dynamical point of view, as 3f  increases, the fixed points 31 OO   change their 

position in the phase system space and the connection (meeting) between their invariant 
manifolds is different. 
 
4. CONCLUSION 
 In this paper we have analyzed a 3-dimensional fluid gyroscope model. The focus has 
been on the dynamical properties and the role of the positive parameters if  in unstable 

parameter regions. In all simulations the initial conditions were 1.0000  zyx . Simulations 

suggest that when 3f  is a bifurcation parameter, the system has three fixed points of saddle-

focus and saddle type. These fixed points change their position in phase space and the 
“macro” dynamics of the system (6) respectively. 
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 Regarding the wide subject under consideration and the number of arising questions, 
the proposed investigation is a step to the profound and full analysis of the fluid gyroscope 
system. 
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Резюме: В тази статия беше изследвано динамичното поведение на система 
от три нелинейни ОДУ описващи поведението на течен жироскоп. От извършения 
анализ и симулации (за специфичен избор на параметрите) става ясно, че 
равновесните състояния са три - от тип седло и седло-фокус, а трептенията са 
условно разделени на две нива – „макро” и „микро”. Промяната на параметъра 3f  

води до изменение на периода на трептенията на „макро” ниво.  




