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Abstract: The article examines the dynamic behavior of a system of three nonlinear
Ordinary Differential Equations describing the behavior of a liquid gyroscope. Our analysis
and simulations (with specific choice of parameters) demonstrates that the equilibrium states
are three — of saddle and saddle-focus type, and the oscillations are conditionally divided into
two levels — "macro" and "micro" level. Changing the parameter f, leads to modification of

the period of the oscillations of the "macro” level.

1. INTRODUCTION

In recent years, increasing attention has been focused on the nonlinear dynamics of
mechanical systems, including those associated with rigid body motion (gyroscope) [1-4].
One way to identify the dynamic changes of a system, and the strategies that may be used to
address those changes, is to build models and explore their bifurcation behavior.

Chaos theory has been developed and chaos thoroughly studied over the past two
decades. A chaotic system is a nonlinear deterministic system that displays complex, noisy-
like and unpredictable behavior. The sensitive dependence upon an initial condition and on
the system’s parameter variations is a prominent characteristic of chaotic behavior [5, 6].

Dissipative systems are a special class of dynamical systems. In general, dissipative
mechanical systems in more than two dimensions have bounded and unbounded orbits
depending on the energy. The bounded trajectories of these systems do not converge to an
equilibrium point or to a periodic or quasi-periodic orbit. In this case the flow is essentially
aperiodic. A dynamical system is dissipative, if its phase volume contracts continuously, i.e
D,<0 (i=1,..,n) Only dissipative dynamical systems have attractors,

The idea for description of real hydrodynamic phenomena was firstly well developed
by 1974, by Obukhov [7, 8]. It will be mentioned that Obukhov is the first who used the
concept “system of hydrodynamic type” for square-nonlinear dynamic system with small
number of degrees of freedom. This system has similar hydrodynamic invariants (invariants
about the energy), which save the phase volume [9].

Let us consider the equation of a vortex
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dimensional un-viscosity flow of homogeneous unbended fluid in the plane (x, y). Here the
function of current v is bi-periodic for any time ¢, i.e.

where J(z//,sz//): is a horizontal Jacobi operator for two-

2r 2r
'//(x')"f)=€//(x+7,y+71fj- (2)
In this domain, the functions of the Laplace operator V’y = Ay are trigonometric about the

argument (mkx + nly), where m, n e Z and A =m’k® + n*I?.

The trigonometric functions can be used as a basis in the field spectral decomposition
of w . Hence we have

i [a,, cos(mkx + nly)+b,, sin(mkx + nly)), (3)

n=0

M

W:

3
é

where a,, () and b, (f) are unknown functions. After substitution of (3) into (1) and

accomplishing integration, we obtain the flow equations in different domains. These
operations are well-known as Galerkin transformations. Thus, the infinity dimensional system
from ordinary differential equations for spectral coefficients ¢, =(a,,,b,, ) is obtained. It is

seen that the new system is a square-nonlinear, i.e.

. d
. = %Z > Zk(m, n, my, ny, n,, n, )cwlcmzn2 , 4)

my on omy n

mn

where k(m, n, m;, n,, m,, n,) are coefficients of nonlinear interaction. Here, we note that for a
real investigation of system (4),a finite number of coefficients must be taken, as the minimal
number is three. Hence, the nonlinear interaction between different components in (3) can be
“caught”.

Consider, for example, w = acosly + f coskx + gsinlysin kx. Thus, we have

A= —(i + LJHFG = pFG,

JAEaE
(1 1
F=l 2 4G = q4G, 5
(12 k2+12j 4 ®)

G= —( 1 1 jklAF = rAF,

7k

where p+q+r=0,4=—1’a, F=-k’f and G= i(k2 + IZ)g are the spectral coefficients

NG

of V% . The equations (5) have minimal number of degrees of freedom, which are necessary
for the investigation of (1). Also, the equations (5) can be integrated exactly in Jacobian
elliptical functions. According to [5, 9], the specific model exists, for which all particular
solutions can be described from the three-fence (5) — triple. The free fluid motion here is
inside of an ellipsoid with linear velocities. In this case, the form of the equations is
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equivalent with those of Euler for rigid body motion with one fixed point (gyroscope) [10].
Hence, the three-fence (5) is called hydrodynamic (fluid) gyroscope [5, 6, 9].
In this paper we consider the set of coupled equations

X=-bx+ayz+ f,

y=-by+cxz+ f,, (6)
z=-=bz+dxy+ f;,
for real functions x(?), y(t) and z(z), where the overdot denotes differentiation with respect to
the time-like independent variable #, and the coefficients a to d and f, (i =1+3). When the

relations
a+c+d=0,ad >0,ac<0,cd <0,b>0, f, 20, (7)
are valid, the system (6) presents the motion of a fluid gyroscope with dissipation [5, 9]. Here,
we give an existence of the results obtained in [5, 6, 9].
The paper is organized as follows: in Section 2 and 3 we present analytical and numerical
results concerning the system (6) behavior for different values of bifurcation (control)
parameters ;. In Section 4 we discuss and summarize our results.

2. QUALITATIVE ANALYSIS
In this section, we investigate the system (6), which presents an autonomous nonlinear

3D dynamical model. According to [6], for f, >0, f, >0 and £, >0, the equilibrium (steady
state) points of system (6) are:

_ 1, __ _ cfiz+b
X =g(ay2+f1), y=b{1—{§,
—acz (8)
25_524_ 2b* 5. 2b2f3—acdf1f2 52 +b4—cdf12 —aalfz2 E_f3b3+bdflf2 0
b ac abc a’c? a’c?

In order to determine the character of the fixed points (Eg. (8)) we make the following
substitutions into (7)
X=X+x, y=y+Xx,, z=Z+X, 9)

Hence, after some transformations the system (6) has the form

X, = =bx, + ¢,x, + ¢, x5 + ax,x,,
X, = —bx, + c3X, + €, x5 + XX, (10)
Xy = —bxy + cox, + cgX, + dx,X,,
where
c=az, c,=ay, C3=cZ, C,=CX, C;=dy, c;=dx. (11)

According to [11], the Routh-Hurwitz conditions for stability of fixed points (8) can be
written in the form
p=3b>0, (12)
q =3b* —cic, —c,¢s — ¢, = 3b° —cdx’ —ady’ —acz’ >0, (13)
r=b% 0,05 — C,C50 — bleyc, + s +Cic5) =
= b° — 2acdsVz — blcd¥’ + ady? + acz’)> 0
R=pg—r= 2[4173 + acdxyz —b(cdfz +ady® + acfz)]> 0.

(14)
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Here the notations p, g, » and R are taken from [11]. The divergence of the flow (11) is

D3=%+%+%=—3b. (15)
Ox, Ox, Oxg
The system (11) is always dissipative and has attractor because D, <0 for 5>0.
The characteristic equation of the system (11) (which is equivalent of (6)) can be
written as
2 +pr’+qr+r=0. (16)
For
a =0.095,5=0.003, ¢c=-0.1,d =0.005, £, =0.01, f, =155, f;,=0.5 (17)

the number of equilibriums and their eigenvalues are given by:

0, =(22.0357, 0.0845, 6.9931), then (z,, 7,, x;) = (0.1812 +1.1835i, — 0.3713) - saddle-focus
0, =(~29.3098, 0.1961, —5.2574), then (z,, 7. ;)= (0.0002 +1.6532i, — 0.0094)- saddle-

focus
0, =(~0.0004, 5136.7, 0), then (4,, 7,. ;)= (~112.6079,112.6019, — 0.003)- saddle

These fixed points can be included in homoclinic and heteroclinic structures with two and

three equilibriums, where their invariant manifolds #*° and WY are meeting each other in a
most intricate manner.

3. NUMERICAL ANALYSIS

In the previous section, we have obtained and shown some analytical results that we
shall use in our numerical analysis of system (6). The corresponding values of the
dimensionless system parameters are as those in (17), where f, =0.4;0.51. The governing
equations of system (6), were solved numerically using MATLAB [12].

In Figures 1 and 2 the solutions of system (6) are shown. For f, =0.4 the system has

monotone “macro” dynamics (see the left panels) and periodic (with period one and two)
“micro” dynamics (see the right panels). On the other hand, for f, =0.51 the system has

periodic “macro” dynamics with period one, as the form of the “micro” dynamics is the same
with the case for £, =0.4.
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Figure 1. Macro (left panels) and micro (right panels) dynamics of system (6) for a=0.095,
b=0.003, c=-0.1, d=0.005, £;=0.01, fr=15.5, f;=0.4.
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Figure 2. Macro (left panels) and micro (right panels) dynamics of system (6) for a=0.095,
b=0.003, c=-0.1, d=0.005, f;=0.01, f,=15.5, f3=0.51.

From dynamical point of view, as f, increases, the fixed points O, — O, change their

position in the phase system space and the connection (meeting) between their invariant
manifolds is different.

4. CONCLUSION
In this paper we have analyzed a 3-dimensional fluid gyroscope model. The focus has
been on the dynamical properties and the role of the positive parameters f in unstable

parameter regions. In all simulations the initial conditions were x, = y, = z, =0.1. Simulations
suggest that when £, is a bifurcation parameter, the system has three fixed points of saddle-

focus and saddle type. These fixed points change their position in phase space and the
“macro” dynamics of the system (6) respectively.
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Regarding the wide subject under consideration and the number of arising questions,
the proposed investigation is a step to the profound and full analysis of the fluid gyroscope
system.
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Knrwouoeu Ooymu: nenuneliHa OUHAMUKA, MeYeH OJICUPOCKON, KadeCmeeH U HUCIeH
aHanu3s

Peztome: B masu cmamusi 6eute u3cied8ano OUHAMUYHOMO NOBEOeHUe HA cucmemd
om mpu nenunetnu OV onuceawu nosedenuemo na meuen dcupockon. Om uzevbpuieHus
amanuz u cumyirayuu (3a cneyuguuen uzbop Ha napamempume) Ccmaea ACHO, ye
PAasHoBecHUme CbCMOSAHUSA ¢a MpU - OMm Mun ceolo u ceono-QoKyc, a mpenmenusma ca
YCN08HO pazdeneHu Ha 0se Husa — ,,mMakpo’ u ,mukpo’. Ilpomanama na napamemvpa f,

600U 00 U3MeHeHUue Ha Nepuood Ha MPenmeHUsma Ha ,, Makpo "’ HUGO.
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