Scientific paper ID 2133 : 2021/3
IDENTIFICATION OF THE ARMATURE CIRCUIT PARAMETERS AT DIFFERENT MODES OF THE SPEED REGULATION OF DC MOTOR

Vasil Dimitrov, Ludmil Popov

Often in the research work or in the activities of repair and commissioning it is necessary to experimentally evaluate some important parameters of a DC electrical drive such as the resistance of the motor armature Ra and the coefficient of electromagnetic interaction . Experimental measurement of the resistance Ra is complex and with many disadvantages: the drive must be subjected to a relatively low supply voltage with the excitation removed or with a locked rotor, a conditional value of the voltage drop in the transition ”contact brushes - collector” is accepted, which in the real case may differ, as it depends on the state of the transition, The resistance of the armature Ra can be determined approximately by assuming that at rated load the energy losses in the resistance of the armature winding are nearly half of the total power losses in the motor.

The report proposes another approach for determining the parameters Ra and cϕ. This method consists of using objective measurements and guarantees very high accuracy, avoiding the main disadvantages of the classical method. The current in the armature, the angular speed and voltage are measured. Then, from the equation for the equilibrium of the electromotive voltages, the d parameters for the different ways of speed regulation are determined. The performed simulation in Simulink environment verifies the developed methods as much more accurate and fast than the classical ones.


постояннотоково електрозадвижване съпротивление на котвата на двигателя коефициент на електромагнитно взаимодействиеDC electrical drive motor armature resistance electromagnetic interaction coefficientVasil Dimitrov Ludmil Popov

BIBLIOGRAPHY

[1] Balgaranov L., I. Milenov, G. Pavlov, Ch. Dzhambazki, Elektrozadvizhvane, 2009.
( [1] Българанов Л., И. Миленов, Г. Павлов, Ч. Джамбазки, Електрозадвижване, 2009. )

[2] Kostadinov P., Opredelyane na tarirovachnata harakteristika na dvigatel za postoyanen tok, n. sp. „Mehanika, Transport, Komunikatsii“, ISSN 1312-3823, t. 18, br. 3/2, str. X-17 – X-22, 2020
( [2] Костадинов П., Определяне на тарировъчната характеристика на двигател за постоянен ток, н. сп. „Механика, Транспорт, Комуникации“, ISSN 1312-3823, т. 18, бр. 3/2, стр. X-17 – X-22, 2020 )

[3] Kudashov A. S. Medvedeva, V. Mihotin, S. Piskarev, Matlab v uchebnyh kursov po issledovaniyu perehodnyh protsessov v elektroenergeticheskih sistemah, Penzenskiy gosuniversitet, Penza, 2009.
( [3] Кудашов А. С. Медведева, В. Михотин, С. Пискарев, Matlab в учебных курсов по исследованию переходных процессов в электроэнергетических системах, Пензенский госуниверситет, Пенза, 2009. )

[4] MathWorks, Simulink User’s Guide, 2019.

[5] Krishnan R., Electric Motor Drives, Modeling, Analysis and Control, Pearson Ed., 2003.

[6] Cherneva G., A. Antonov, Modelirane i simulatsiya na mehatronen modul za regulirane na skorostta na dvigatel za postoyanen tok, Mehanika, Transport, Komunikatsii, tom 17, broy 3, 2019 g.
( [6] Чернева Г., А. Антонов, Моделиране и симулация на мехатронен модул за регулиране на скоростта на двигател за постоянен ток, Механика, Транспорт, Комуникации, том 17, брой 3, 2019 г. )

[7] www.dynamo-bg.com

 

 

 

This site uses cookies as they are important to its work.

Accept all cookies
Cookies Policy