Scientific paper ID 1503 : 2017/3

Nevena Ivaylova Babunska-Ivanova

Because of the wide variety of rock masses in underground construction, have been created different classifications of rock, which account for the effects of a number of factors. The classifications that are widely used worldwide for tunnel construction are the Bieniawski’s RMR system and the Barton’s Q system.

The the article outlined the purpose and tasks of the study. As a result, have been made a series of correlations between the two classifications identified by different authors. There has been applied deive statistics, on which base is created new correlation between RMR and Q for their comparison. Various distribution factors are defined, such as: mean, standard deviations, range, coefficients of kurtosis, skewness, and variation, using the MS Excel software product. From the statistical analysis based on the values of coefficients of variation, skewness and kurtosis, are found that the samples are approximately homogeneous and the signs have a normal distribution with a normal kurtosis. A comparison of the dependence with Bieniawski, Barton and other authors was made, which is illustrated with graphs. On the base of the obtained dependence of RMR with Q, the relationship between the two classifications is determined, which is represented in numerical and graphical expression.

тунели класификации скален масив RMR система Q система дескриптивна статистикаtunnels classification rock massif RMR system Q system descriptive statisticNevena Ivaylova Babunska-Ivanova


[1] Totev Y. i kolektiv. Normi za proektirane na patni i zhelezopatni tuneli, 1988.
( [1] Тотев Й. и колектив. Норми за проектиране на пътни и железопътни тунели, 1988. )

[2] Deere, D.U., Deere, D.W. The Rock Quality Designation (RQD) Index in Practice. In Rock Classification Systems for Engineering Purposes, ASTM Special Publication 984, pp. 91-101, Philadelphia, 1988.

[3] Bieniawski Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologist in Mining, Civil, and Petroleum Engineering, Wiley, 1989.

[4] Barton N., R. Lien, J. Lunde. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics 6, pp.189-236, Springer-Verlag, 1974.

[5] Bulychev N.S. Mehanika podzemnyh sooruzheniy v primerah i zadachah, ISBN 5-247-00294-6, s. 270, Nedra, 1989.
( [5] Булычев Н.С. Механика подземных сооружений в примерах и задачах, ISBN 5-247-00294-6, с. 270, Недра, 1989. )

[6] Hoek E. Practical Rock Engineering, 341 р.,

[7] Palmström A., RMi – A Rock Mass Characterization System for Rock Engineering Purposes. PhD thesis, 400 p., Oslo University, Norway, 1995.

[8] Ranasooriya J., H. Nikraz. Reliability of the Linear Correlation of Rock Mass Rating (RMR) and Tunnelling Quality Index (Q). Australian Geomechanics Vol. 44, No 2, 2009.

[9] Barton N. The influence of joint properties in modelling jointed rock masses. 8th ISRM Congress, 25-29 September, Tokyo, Japan, Volume 3, pp. 1023-1032, Balkema, 1995.

[10] Makurat A., F. Løset, A. W. Hagen, L. Tunbridge, V. Kveldsvik, E. Grimstad. Äspö HRL. A deive rock mechanics model for the 380–500 m level. NGI, Oslo, 2006.

[11] Yağız S, S. Cheema. Review and comparison of rock mass classification systems. In: Pakistan Engineering Congress. PEC, 2001-2002, paper no. 629, pp. 449-460, 2001.

[12] Castro-Fresno D., R. Diego-Carrera, F. Ballester-Muñoz, J. Álvarez-García. Correlation between Bieniawski’s RMR and Barton’s Q Index in Low-Quality Soils. Revista de la Construcción . Volume 9 No 1, pр. 107–119, 2010.

[13] Hashemi M., Sh. Moghaddas, R. Ajalloeian. Application of Rock Mass Characterization for Determining the Mechanical Properties of Rock Mass: a Comparative Study. Rock Mech Rock Eng. 43:305–320 DOI 10.1007/s00603-009-0048-y, 2010.

[14] Toševski A., D. Pollak, T. Zenko, D. Aljinovicd, N. Tadejd. Some engineering properties of limestone: Tunnel Strazˇina case study (Croatia). Tunnelling and Underground Space Technology, 2010.

[15] Hossaini S., F. Nezhadshahmohamad, M. Dadkhah. Stability Assessment and Support Design for Water Deviation Binary Tunnels of Bakhtiyari Dam – Iran. 11th Underground Coal Operators Conference, pp 99-104, Australia, 2011.

[16] Laderian, A., М.А. Abaspoor. The correlation between RMR and Q systems in parts of Iran. Tunnelling Underground Space Technology, 27, pp.149-158, 2012.

[17] Ranasooriya J., M. Swe, H. Nikraz Application of Rock Mass Classification Methods to the Klong Tha Dan Project Tunnels, IJMMP Vol.3 No.1, pp. 37-46 ISSN: 2229-3124 © International Science Press, 2012.

[18] Rafiee R., M. Ataei, M. Kamali. Tunnels stability analysis using binary and multinomial logistic regression(LR).Journal of Geology and Mining Research, Vol. 5(4), pp. 97-107, 2013.

[19] Ali W., N. Mohammad, T. Mohammad. Rock Mass Characterization for Diversion Tunnels at Diamer Basha Dam, Pakistan – a design perspective. International Journal of Scientific Engineering and Technology, Volume No.3, Issue No.10, pp. 1292-1296, 2014.

[20] Caicedo A., Perez D. Correlations between the RMR and Q geomechanical classifications at “La Línea” exploratory tunnel, Colombian Central Andes. Boletín Ciencias de la Tierra, Nro. 34, pp. 42-50, ISSN 0120-3630, 2013.

[21] Jaques D., K. Rezende, E. Marques. Correlação entre os sistemas RMR e Q em maciços rochosos da mina de volta grande, sudeste do Brasil. 15 Congresso Brasileiro, 2015.

[22] Sayeed I. R. Khanna. Empirical correlation between RMR and Q systems of rock mass classification derived from Lesser Himalayan and Central crystalline rocks. International Conference on “Engineering Geology in New Millennium”, 2015.

[23] Hoek E., P. Kaiser, W. Bawden. Support of Underground Excavations in Hard Rock. ISBN10 9054101873, 225 р., A. A. Balkema, 1995.

[24] Celada, B., I. Tardáguila, P. Vrona, A. Rodriguez, Z.T. Bieniawski. Innovating Tunnel Design by an Improved Experience-based RMR System. Proc.World Tunnel Congress, ITA, Brazil, pp.60-68, 2014.

[25] Ganeva Z. Da preotkriem statistikata s IBM SPSS Statistics, s. 713, Elestra, ISBN 978-619-7292-01-5, Parvo izdanie, 2016.
( [25] Ганева З. Да преоткрием статистиката с IBM SPSS Statistics, с. 713, Elestra, ISBN 978-619-7292-01-5, Първо издание, 2016. )

[26] Mihalev Dr. Izbrani lektsii po statistika,
( [26] Михалев Др. Избрани лекции по статистика, )

[27] Karashtranova E. Formirane na ponyatiya ot opisatelnata statistika s pomoshtta na MS Excel. Trideset i vtora proletna konferentsiya na Sayuza na matematitsite v Balgariya, s.362-368, Slanchev bryag, April 2003.
( [27] Каращранова Е. Формиране на понятия от описателната статистика с помощта на MS Excel. Тридесет и втора пролетна конференция на Съюза на математиците в България, с.362-368, Слънчев бряг, Април 2003. )

( [28]Показате... )





This site uses cookies as they are important to its work.

Accept all cookies
Cookies Policy