|
Научен доклад ID 1051 : 2014/3
МАТЕМАТИЧЕСКО МОДЕЛИРАНЕ НА ОТСЛАБЕНА ПЛАСТИНА В РЕЗУЛТАТ НА КРЪГЪЛ ОТВОР ПРИ УСЛОВИЕ НА ЧИСТО ОГЪВАНЕ
Драган Петрович, Милан Бижич Задачата на тази статия е математическо моделиране на отслабена плоча от кръгъл отвор в състояние на чисто огъване. Математическият модел се формира с помощта на метод комплексна променлива, и дава възможност за пълно аналитично определяне на напреженията във всяка точка на пластината, и особено около отвора, когато е налице добре известния проблем на концентрация на напреженията. Представената методика може да се прилага за изчисление на всяка пластина отслабена от кръгъл отвор подложена на чисто огъване. Представената в статията методология се прилага за решаването на един конкретен пример. Сравнителният анализ показва висока точност на получените аналитични резултати по представената методология с резултатите, получени от FEM изчисление със софтуерен пакет ANSYS 12. Прилагането на резултатите от този документ е от голямо значение за качеството на проектиране и оптимизиране на тънкостенни конструкции от тип пластина отслабени от кръгъл отвор, които са много чести в инженерната практика.
Моделиране прастина кръгъл отвор чисто огъванаModelling Plate Circular Hole Pure BendingДраган Петрович Милан Бижич BIBLIOGRAPHY [1] Timoshenko S., Gudier J. N., 1951, Theory of elasticity, McGraw-Hill Book Co., New York. [2] Timoshenko S., Woinowsky-Kreiger S., 1959, Theory of plates and shells, McGraw-Hill Book Co., New York. [3] Raskovic D., 1981, Teorija elasticnosti, Naucna knjiga, Beograd. [4] Troyani N., Gomes C., Sterlacci G., 2002, Theoretical stress concentration factors for short rectangular plates with centred circular holes, Journal of Mechanical Design, vol. 124, iss. 1, 126–128. [5] Zheng Yang, Chang-Boo Kim, Chongdu Cho, Hyeon Gyu Beom, 2007, The concentration of stress and strain in finite thickness elastic plate containing a circular hole, International Journal of Solids and Structures, Volume 45, Issues 3-4, 713-731. [6] Bizic M., Petrovic D., 2011, Identification of the effects of circular hole on the stress state of homogeneous isotropic uniaxial tensioned plate, IMK-14 - Istraživanje i razvoj, vol. 17, iss. 3, 17–22. [7] Wang Q.Z., 2004, Stress concentration factors for an eccentric circular hole in a finite-width strip or in a semi-infinite plate in tension. The Journal of Strain Analysis for Engineering Design, vol. 39, no. 6, 625–630. [8] Zheng Yang, Chang-Boo Kim, Hyeon Gyu Beom, Chongdu Cho, 2010, The stress and strain concentrations of out-of-plane bending plate containing a circular hole, International Journal of Mechanical Sciences, Volume 52, Issue 6, 836-846. [9] Chen P.S., Archer R.R., 1989, Stress concentration factors due to the bending of a thick plate with circular hole. Archive of Applied Mechanics, vol. 59, no. 6, 401–411. [10] Cao J.J., Bell A.J., 1992, General solutions for a circular flat plate with a central hole loaded by transverse force or bending moment uniformly distributed along a circumference, International Journal of Pressure Vessels and Piping, Volume 51, Issue 2, 155-173. [11] Rubayi N.A., 1975, Bending stress concentrations in a thick circular plate with central hole, Mechanics Research Communications, Volume 2, Issue 4, 159-164. [12] Maiorana E., Pellegrino C., Modena C., 2009, Elastic stability of plates with circular and rectangular holes subjected to axial compression and bending moment, Thin-Walled Structures, Volume 47, Issue 3, 241-255. [13] Moen D.C., Schafer B.W., 2009, Elastic buckling of thin plates with holes in compression or bending. Thin-Walled Structures, Volume 47, Issue 12, 1597-1607. [14] Bakhshandeh K., Rajabi I., Rahimi F., 2008, Investigation of Stress Concentration Factor for Finite-Width Orthotropic Rectangular Plates with a Circular Opening Using Three-Dimensional Finite Element Model. Strojniski vestnik - Journal of Mechanical Engineering, Volume 54, Number 2, 140-147. [15] Linping W., Markenscoff X., 1996, Singular stress amplification between two holes in tension, Journal of Elasticity, Volume 44, Number 2, 131-144. [16] Arshadnejad S., Goshtasbi K., Aghazadeh J., 2009, Stress concentration analysis between two neighbouring circular holes under internal pressure of a non-explosive expansion material. Yerbilimleri, vol. 30, no. 3, 259–270. [17] Chen K.T., Ting K., Yang W.S., 2000, Stress analysis of two-dimensional perforated plates using boundary element alternating method, Computers & Structures, vol. 75, iss. 5, 515–527. [18] Zhang L.Q., Yue Z.Q., Lee C.F., Tham L.G., Yang Z.F., 2003, Stress Solution of Multiple Elliptic Hole Problem in Plane Elasticity, Journal of Engineering Mechanics, Volume 129, Issue 12, 1394-1407. [19] Radi E., Strozzi A., 2009, Jeffery solution for an elastic disk containing a sliding eccentric circular inclusion assembled by interference fit, International Journal of Solids and Structures, 46, 4515–4526. [20] Bizic M., Petrovic D., Pancic D., Djinovic Z., 2012, Mathematical modelling of a disc weakened by an eccentric circular hole, Journal of theoretical and applied mechanics, 50, 4, 1097-1108. [21] Muskhelishvili N.I., 1963, Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff, Groningen. [22] Savin G.N., 1966, Stress concentration around holes, Pergamon press, London. [23] Jian-Ke Lu, 1995, Complex Variable Methods in Plane Elasticity, World Scientific Publishing, Sigapore. [24] Gao X.L., 2004, On the complex variable displacement method in plane isotropic elasticity, Mechanics Research Communications, Volume 31, Issue 2, 169-173. [25] Simha K.R.Y., Mohapatra S.S., 1998, Stress concentration around irregular holes using complex variable metod, Sadhana, vol. 23, no. 4, 393–412. [26] Gu Lei, Huang Mao-Kuang, 1991, A complex variable boundary element method for solving plane and plate problems of elasticity, Engineering Analysis with Boundary Elements, Volume 8, Issue 6, 266-272. [27] Tang S., Kitching R., 1993, Elastoplastic analysis of two-dimensional problems with hole by boundary element method using complex variables, International Journal of Mechanical Sciences, Volume 35, Issue 7, 577-586. |