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Abstract: Kronecker algebra consists of Kronecker product and Kronecker sum. It can 

be used to model systems consisting of several actors and a number of limited resources. In 
particular, it can be used to model railway systems consisting of trains, their routes in the 
system, and track sections building up the railway infrastructure. In this paper we will show 
several applications of Kronecker algebra in the railway domain. In particular, we consider: 
deadlock analysis [1], travel time analysis [2], and energy analysis. Integrating all three 
types of analysis within one single type of Kronecker-based analysis is rather simple and can 
be done very efficiently. Our implementation is very efficient both in time and space. 
Kronecker algebra operations can easily be parallelized and thus our implementation can 
fully take advantage of today's multi-core computer architecture. In addition, our 
implementation shows that adding constraints (connections, overtaking ...) to the problem 
improves execution time. In fact, a harder problem is easier to solve. 

 
INTRODUCTION 

Kronecker algebra and its applications in railway systems have been introduced in 
some previous scientific papers. In [1] it is shown how to avoid deadlocks within a railway 
network with several trains. In [2] it is explained how to calculate the travel time of trains 
within a railway system. Blocking among trains occurs due to sharing of track sections, 
connections and overtaking. Blocking time is incorporated into the calculated travel time. 

In contrast to some preliminary papers which deal with the theoretical background, we 
show some practical examples in the following sections, which have been introduced in [7]. 
 
A SIMPLE EXAMPLE 

In this section we give a small example on how deadlocks can be avoided by the 
Kronecker algebra based approach. 

 

 
Figure 1. A simple example: Railway system 
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Figure 1 illustrates a typical scenario that may lead to a deadlock. The routes and the 
calculated travel time of the three involved trains and the corresponding travel time values for 
each track section are given in Table 1. The travel time for each train is calculated by 
summarizing the travel time of each track section of its route including the blocking time. 
Blocking occurs due to the shared track section 3. 

If train L3 enters track section 3 before the other trains move, a deadlock is 
unavoidable. The same problem will occur when train L2 enters track section 3. Thus, there 
exists only one possibility to avoid a deadlock, namely L1 has to enter and leave track section 
3 first. 

Trains Routes Travel 
Time 

L1 p3 (0), v1 (5), p4 (0), v3 (3), v4 (4) 12 
L2 p3 (0), v2 (4), p5 (0), v3 (4), v5 (5) 28 
L3 p3 (0), v5 (5), p1 (0), v3 (3), v1 (5) 21 

Table 1. A simple example: Routes and travel time 
 

After applying Kronecker algebra to this example, we get a graph (Figure 2 left), which 
consists of 42 nodes. The edges are labelled by the number of the train and its operation 
within the railway system, where “p” denotes “enter (reserve) a track section” and “v” 
denotes “leave (release) a track section”.  

To increase readability three different node types are used in the graph: 
 Red nodes denote deadlocks1 or nodes from which only deadlocks can be reached. 
 Green nodes denote safe states. A state is safe if all trains can perform their actions 

without having to take into account the moves of the other trains in the system, 
provided that the track section which they are to enter is not occupied by another 
train2. 

 From orange nodes both red and green nodes can be reached. 
As we are interested in avoiding deadlocks the graph can be reduced, in particular the 

red nodes can be removed. Additionally all safe states can be eliminated, which have at least 
one safe state as predecessor. The resulting graph after reduction is illustrated on the right in 
Figure 2. 

 

CONNECTIONS AND OVERTAKING 
 

 
Figure 2. Connections and overtaking: Railway system 

 

Now we will show a more elaborate example containing connections and overtaking. 
The system is depicted in Figure 2 and the routes are defined in Table 2. By applying 
Kronecker algebra 298,721,280 states are produced, where only 206 states of interest will 
remain after the reduction. The resulting graph is depicted in Figure 5. p12, v12, p13 and v13 are 
additional constraints. We assume that train L2 overtakes L1 and L4 overtakes L3 within the 
station, respectively. For this reason additional artificial track sections 12 and 13 are needed 

                                                           
1  Deadlock analysis for railway systems via our approach is studied in [1].   
2  If a track section is occupied by another train, the movement of the train wanting to enter may be delayed (blocked) but no 
deadlock can occur.   
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Figure 5. Connections and overtaking: Reduced graph 

 

By applying Kronecker algebra 16,384,000 possible states are produced and after 
reduction only 93 nodes remain. The resulting graph depicts all possible sequences of train 
movements which will not result in a deadlock (Figure 6). 

The first step to solve the situation above is that one of the short trains has to move 
first to the next section. Then the long trains can start their journey. A similar example with 
four trains und thus less complexity can be found in [7]. 

 

 
Figure 6. Extra-long trains: Reduced graph 
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ENERGY ANALYSIS 
By applying Kronecker algebra shared resources and their access can be modelled. In 

the previous section, some examples with track sections as shared resources are explained; 
with the restriction that only one train can enter a track section. The model can be extended to 
use a shared resource which can be used by more than one train simultaneously. In particular, 
so-called counting semaphores [3] can be used to model discrete power resources. For 
example a counting semaphore of size four allows four p-operations before it blocks. 

If we quantise energy into standardised packages e.g. 1 MWh, we can model a power 
station or substation capable of producing e.g. 20 MW by a counting semaphore of size 20. Of 
course a more fine-grained approach is viable, too. So we may quantise energy into 100 kWh 
or even 10 kWh steps. We assume that it is known a priori how much energy each train needs 
for each track section. Now in our model, a train acquires amounts of power from the power 
station before it enters a certain track section by issuing exactly the number of p-operations 
that correspond to the amount of power it will need. On leaving the track section, the train 
will issue the same number of v-operations to release its power needs. 

 

 
Figure 7. Energy analysis: Railway system 

 
We give an example consisting of a simple railroad system with two trains which is 

illustrated in Figure 7, where train L1 needs two energy units for track section 1 and 2 and one 
for 3 and 4. L2 needs two units for track section 5 and 6 and one for 7 and 8. The routes 
including the time values of each track section for the two trains and the resulting travel time 
can be found in Table 3, where p9 models the reservation of one single energy unit and v9 its 
release. Figure 8 (left) illustrates the resulting graphs with 4 energy units available and Figure 8 
(right) shows the result with 3 energy units available 

 
Trains Routes Travel Time 

  3 units 4 units 
L1 p9 (0), p9 (0), p2 (0), v1 (4), p3 (0), v2 (6),  

v9 (0), p4 (0), v3 (3), v4 (4), v9 (0) 
24 26 

L2 p9 (0), p9 (0), p6 (0), v5 (3), p7 (0), v6 (4),  
v9 (0), p8 (0), v7 (5), v8 (4), v9 (0) 

17 16 

Table 3. Energy analysis: Routes and travel time 
 
CONCLUSION 

We have presented some practical examples for the application of Kronecker algebra 
where we model movements of trains within a railway network and access to a shared 
resource (e.g. track sections, available energy capacity). This approach can be used to model 
complex railway systems including aspects of being deadlock-free, being conflict-free, and 
being minimal in terms of energy demand. The theoretical background of Kronecker algebra 
can be found in some preliminary papers [1, 2, and 6]. 
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Figure 8. Energy analysis: Resulting graphs 
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АВСТРИЯ 
  

Ключови думи: Алгебра на Кронекер, анализ на времето за пътуване, енергиен 
анализ, анализ на безизходно положение 

Резюме: Алгебрата на Кронекер се състои от произведение на Кронекер и сбор 
на Кронекер. Тя може да се използва за моделиране на системи, състоящи се от 
няколко участника и редица ограничени ресурси. В частност, тя може да се използва 
да моделира железопътна система, състояща се от влакове, техните маршрути в 
системата и коловозните секции, изграждащи железопътната инфраструктура. В 
тази статия  ще покажем някои приложения на алгебрата на Кронекер в областта 
на железопътния транспорт. В частност, разглеждаме: анализ на безизходното 
положение [1], анализ на времето за пътуване [2] и енергиен анализ. Интегрирането 
на трите вида анализи в един единствен Кронекер-базиран анализ може да се 
реализира много ефективно. Реализирането на нашите алгоритми  е ефективно, 
както по  време, така и по отношене на необходимия обем памет. Операциите в 
алгебрата на Кронекер лесно могат да бъдат паралелизирани и така предложените 
алгоритми да се приложат върху многоядрена компютърна архитектура. В 
допълнение, нашето изследване показва, че добавянето на ограничения към задачата 
(връзки, изпреварване, ...)  подобрява времето за изпълнение. В действителност по-
трудна задача се решава по-лесно.   

 
 
 
 
 
 
 
 


