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Abstract: Kronecker algebra consists of Kronecker product and Kronecker sum. It can
be used to model systems consisting of several actors and a number of limited resources. In
particular, it can be used to model railway systems consisting of trains, their routes in the
system, and track sections building up the railway infrastructure. In this paper we will show
several applications of Kronecker algebra in the railway domain. In particular, we consider:
deadlock analysis [1], travel time analysis [2], and energy analysis. Integrating all three
types of analysis within one single type of Kronecker-based analysis is rather simple and can
be done very efficiently. Our implementation is very efficient both in time and space.
Kronecker algebra operations can easily be parallelized and thus our implementation can
fully take advantage of today's multi-core computer architecture. In addition, our
implementation shows that adding constraints (connections, overtaking ...) to the problem
improves execution time. In fact, a harder problem is easier to solve.

INTRODUCTION

Kronecker algebra and its applications in railway systems have been introduced in
some previous scientific papers. In [1] it is shown how to avoid deadlocks within a railway
network with several trains. In [2] it is explained how to calculate the travel time of trains
within a railway system. Blocking among trains occurs due to sharing of track sections,
connections and overtaking. Blocking time is incorporated into the calculated travel time.

In contrast to some preliminary papers which deal with the theoretical background, we
show some practical examples in the following sections, which have been introduced in [7].

A SIMPLE EXAMPLE
In this section we give a small example on how deadlocks can be avoided by the
Kronecker algebra based approach.
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Figure 1. A simple example: Railway system
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Figure 1 illustrates a typical scenario that may lead to a deadlock. The routes and the
calculated travel time of the three involved trains and the corresponding travel time values for
each track section are given in Table 1. The travel time for each train is calculated by
summarizing the travel time of each track section of its route including the blocking time.
Blocking occurs due to the shared track section 3.

If train L3 enters track section 3 before the other trains move, a deadlock is
unavoidable. The same problem will occur when train L, enters track section 3. Thus, there
exists only one possibility to avoid a deadlock, namely L, has to enter and leave track section
3 first.

Trains Routes Travel
Time
L1 P3 (0), v1 (5), P4 (0), V3 (3), V4 (4) 12
L2 P3 (0), V2 (4), ps (0), V3 (4), vs (5) 28
L3 P3 (0), Vs (5), P1 (0), v3 (3), V1 (5) 21

Table 1. A simple example: Routes and travel time

After applying Kronecker algebra to this example, we get a graph (Figure 2 left), which
consists of 42 nodes. The edges are labelled by the number of the train and its operation
within the railway system, where “p” denotes “enter (reserve) a track section” and “v”
denotes “leave (release) a track section”.

To increase readability three different node types are used in the graph:

e Red nodes denote deadlocks® or nodes from which only deadlocks can be reached.

e Green nodes denote safe states. A state is safe if all trains can perform their actions

without having to take into account the moves of the other trains in the system,
provided that the track section which they are to enter is not occupied by another
train®.

e From orange nodes both red and green nodes can be reached.

As we are interested in avoiding deadlocks the graph can be reduced, in particular the
red nodes can be removed. Additionally all safe states can be eliminated, which have at least
one safe state as predecessor. The resulting graph after reduction is illustrated on the right in
Figure 2.

CONNECTIONS AND OVERTAKING
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Figure 2. Connections and overtaking: Railway system

Now we will show a more elaborate example containing connections and overtaking.
The system is depicted in Figure 2 and the routes are defined in Table 2. By applying
Kronecker algebra 298,721,280 states are produced, where only 206 states of interest will
remain after the reduction. The resulting graph is depicted in Figure 5. pi2, V12, P13 and vi3 are
additional constraints. We assume that train L, overtakes L; and L, overtakes L3 within the
station, respectively. For this reason additional artificial track sections 12 and 13 are needed

1
2

Deadlock analysis for railway systems via our approach is studied in [1].
If a track section is occupied by another train, the movement of the train wanting to enter may be delayed (blocked) but no
deadlock can occur.
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for each train pair to ensure synchronization between the trains. The same strategy is used for
connections.
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Figure 3. A simple example: Resulting graph and reduced graph

As a result L; will go to track section 3 and waits until L, has passed track section 7.
Ls will go to track section 4 and waits until L4 has passed track section 2 but L, will have to
wait until L, has passed section 7.

Trains Routes
Ly Ps, V2, P12, P7, Ps, V3, V7, P10, Vs, P11, Vio, V1u
Lo P2, V1, P9, V2, P7, P8, Vo, V7, P10, Vs, P12, P11, V1o, Vi1
Ls Ps, V1o, Pa, Vs, V13, P2, Va, P1, V2, Vi
Ly P10, V11, Ps, V10, Pe, Vs, P7, Po, Ve, V7, P2, Vo, P13, P1, Vo, Vi

Table 2. Connections and overtaking: Routes

EXTRA-LONG TRAINS
Sometimes it happens that a train is much longer than a track section within a railway
station. As a result such extra-long trains can’t be used for crossings. Figure 4 illustrates such
an example.
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Figure 4. Extra-long trains: Railway system
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Figure 5. Connections and overtaking: Reduced graph

By applying Kronecker algebra 16,384,000 possible states are produced and after
reduction only 93 nodes remain. The resulting graph depicts all possible sequences of train
movements which will not result in a deadlock (Figure 6).

The first step to solve the situation above is that one of the short trains has to move
first to the next section. Then the long trains can start their journey. A similar example with
four trains und thus less complexity can be found in [7].

Frore.

Figure 6. Extra-long trains: Reduced graph
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ENERGY ANALYSIS

By applying Kronecker algebra shared resources and their access can be modelled. In
the previous section, some examples with track sections as shared resources are explained;
with the restriction that only one train can enter a track section. The model can be extended to
use a shared resource which can be used by more than one train simultaneously. In particular,
so-called counting semaphores [3] can be used to model discrete power resources. For
example a counting semaphore of size four allows four p-operations before it blocks.

If we quantise energy into standardised packages e.g. 1 MWh, we can model a power
station or substation capable of producing e.g. 20 MW by a counting semaphore of size 20. Of
course a more fine-grained approach is viable, too. So we may quantise energy into 100 kWh
or even 10 kWh steps. We assume that it is known a priori how much energy each train needs
for each track section. Now in our model, a train acquires amounts of power from the power
station before it enters a certain track section by issuing exactly the number of p-operations
that correspond to the amount of power it will need. On leaving the track section, the train
will issue the same number of v-operations to release its power needs.
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Figure 7. Energy analysis: Railway system

We give an example consisting of a simple railroad system with two trains which is
illustrated in Figure 7, where train L; needs two energy units for track section 1 and 2 and one
for 3 and 4. L, needs two units for track section 5 and 6 and one for 7 and 8. The routes
including the time values of each track section for the two trains and the resulting travel time
can be found in Table 3, where ps models the reservation of one single energy unit and vg its
release. Figure 8 (left) illustrates the resulting graphs with 4 energy units available and Figure 8
(right) shows the result with 3 energy units available

Trains Routes Travel Time
3 units 4 units
L. P (0), ps (0), P2 (0), v1 (4), ps (0), V2 (6), 24 26
Vo (0), P4 (0), V3 (3), V4 (4), Vs (0)
L, P9 (0), Ps (0), ps (0), Vs (3), p7 (0), Ve (4), 17 16
Vg (0), ps (0), v7 (5), Vs (4), Vs (0)

Table 3. Energy analysis: Routes and travel time

CONCLUSION

We have presented some practical examples for the application of Kronecker algebra
where we model movements of trains within a railway network and access to a shared
resource (e.g. track sections, available energy capacity). This approach can be used to model
complex railway systems including aspects of being deadlock-free, being conflict-free, and
being minimal in terms of energy demand. The theoretical background of Kronecker algebra
can be found in some preliminary papers [1, 2, and 6].
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Figure 8. Energy analysis: Resulting graphs
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AJI'EBPA HA KPOHEKEP KATO PAMKA 3A OITUMU3UPAHE HA
EKCIVIOATALUATA HA ) KEJE3HULUTE
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Tpeumncmpage 1-3, 1040 Buena, Buenckus ynugepcumem no mexmnoaio2uu
ABCTPUHA

Knwuoeu oymu: Ancebpa na Kpowexep, amanuz Ha epememo 3a Nnvmyeawe, eHepeueH
aHanu3, aHaIU3 Ha 6e3U3XOOHO NOLOHCEHUE

Pe3rome: Anceobpama na Kponekep ce cocmou om npoussedenue na Kponexep u coop
Ha Kponexep. Ta modce O0a ce uznonzea 3a mooenupame Ha cCucmemu, CbCMosAwU ce om
HAKOJIKO YYACMHUKA U peouya ocpanuyeHu pecypcu. B uacmnocm, ms mooice da ce uznonzea
0a Mooenupa Hcene3onvbmua Cucmemda, CbCmoaua ce om 61aKoge, mexHume Mapuipymu 8
cucmemama U KOJIOBO3HUME CEKYUU, U3PAACOAWU dHceNe30nvmuama ungpacmpykmypa. B
masu cmamus we NOKaxcem HAKOU npunodxceHus Ha aneeopama na Kpomnexep 6 obnacmma
Ha dicene3onvmuus mpancnopm. B uacmuocm, pazenesxcoame: amanusz Ha 6e3u3Xx00HOmMO
nonoxcenue [1], ananuz na epememo 3a nvmysaune [2] u enepeuen ananus. Humeepupanemo
Ha mpume 6uda aHamu3u 6 eouH eduncmeeH Kponekep-6asupan aunanuz moodce oa ce
peanusupa MHo20 egexmueno. Peanuzupanemo ma uawume aneopummu e egpexkmueHo,
KAKmo no eépeme, maka u NO OmHouieHe Ha Heobxooumus obem namem. Onepayuume 6
aneeopama na Kpomnekep necno moecam oa 6voam napaneiusuparHu u maxa npeonrodcenume
aneopummu 0a ce HPULONCAm 6bpXYy MHO20S0peHa KOMRIOMbPHA —apxumekmypa. B
OONBIHEeHUe, Haulemo U3Cieo0s8ane noKased, 4e 000assAHemo Ha 0SpanudeHus Kvm 3adaiama
(6pv3Ku, usnpesapsawe, ...) nNo00OPABA 6pememo 3a usnviIHeHue. B Oeticmeumenrocm no-
MpYyoHa 3a0ava ce peulasa no-iecHo.
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