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Abstract: The study of dynamics of an inverted pendulum with follower force is of
interest to several fields of physics, mechanics and engineering. Using Lyapunov-Andronov’s
theory, we find a new analytical formula for first Lyapunov value at the boundary of stability.
It enables one to study in details the bifurcation behavior of dynamic systems of the above
type. We check the validity of our analytical results on the first Lypunov’s value by numerical
simulations. Our numerical analysis suggests that follower force have stabilization dynamical
role and hard stability loss take place.

1. Introduction

Dynamical systems are the study of the long-term evolution of evolving deterministic
systems. Evolution is function which describe the state of a system as a function of time and
which satisfy the equation(s) of motion of the system. A system whose time evolution
equations appear in a nonlinear form is termed nonlinear. It is widely known that almost all
mechanical systems are nonlinear. A dynamical system may be defined as a deterministic
mathematical prescription for evolving the state of a system forward in time (continuous
variable or discrete integer-valued variable) [16].

It is well-known that the simplest type of evolution is stationary, where the state is
constant in time, i.e. the qualitative structure of the dynamical system flow does not change
for sufficiently small variations of the parameters(s). Next we also know periodic evolutions,
where after a fixed period, the system always returns to the same state. Stationary and
periodic evolutions are regular and predictable. In some dynamical systems one meets
evolutions (behaviors) that are not so regular and predictable. In these cases (where the
unpredictability can be established), we speak of chaotic behavior [1].

The concept of stability is based on dynamical Lyapunov’s definition which apply to
equilibrium states as well as motions. The term ‘dynamical stability’ is somewhat ambiguous
and on the other hand the term dynamical instability is often used to indicate dynamical
bifurcations from an equilibrium state (local bifurcations) or global bifurcations.
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The study of possible changes in the structure of the orbits (evolution) of a dynamical
system as parameters are varied is called bifurcation theory. A parameter value for which the
flow does not have stable orbit structure is called a bifurcation value, and the system is said to
be at a bifurcation point. Thus, a bifurcation is a change of the topological type of the system
as its parameters pass through a bifurcation (critical) value.

From an analytical point of view, the Andronov-Hopf bifurcation leads to the
appearance from the equilibrium state, of small-amplitude periodic oscillations. This local
bifurcation is the simplest one, i.e. it can be detected if fix any small neighborhood of the
equilibrium, and can be types: (i) supercritical (soft loss of stability) and (ii) subcritical (hard
loss of stability). In the scientific literature the local bifurcations are refered as bifurcations of
equilibria or fixed points, although that we analyze not these points but the whole phase
portraits near the equilibria.

There also global bifurcations, which cannot be detected by looking at small
neighborhoods of fixed (equilibrium) points or cycles.

The study of dynamics of an inverted pendulum with follower force has a long history.
The earliest theoretical investigation is that by Pfluger [2] who studied the effect of follower
force on the dynamical behavior of an elastic bar. He used Euler’s concept to find the critical
magnitude of the follower force that causes in stability of the rectilinear equilibrium mode. It
is interesting that Pfluger obtained an unexpected conclusion (which is contradicted
experimental observations) for missing critical load. Later, Ziegler [3-5] resolved Pfluger
paradox by modeling an elastic cylindrical pipe with a moving fluid inside by a double simple
pendulum with a follower force. This follower force is appeared to be responsible for the
disagreement between Pfluger’s theoretical results and experimental observations.

In [6], Hagedorn examined a mathematical model with two degrees of freedom
previously studied by Zeigler, but Zeigler’s linear damping is replaced by a nonlinear term, as
is usual for structural damping. It is obtained there that nonlinear damping gives rise to a
behavior similar to that due to linear damping; however the stability of zero position depends
only on the ratio of the two damping coefficients. Using some ideas of Zeigler, in [7] the
structure of the dissipative operators are studied in both case for classical dissipative forces-
as defective or ideal according to whether they do or d not exceed a critical parameter. Thus,
the necessary conditions are established for perturbations effected by small linear forces.
Some additional results are found by Kounadis [8] using a nonlinear analysis, i.e. it is
deduced that the critical states corresponding to both types of instability may become unstable
if a slight material nonlinearity is included; then, the mechanism of divergence and flutter
instability change from stable to unstable and vice versa for a critical value of the material
nonlinearity which depends on the non-conservativeness loading parameter.

In the recent years, there has been particular interest in the study of nonlinear behavior
of inverted pendulums with or not follower force [10-13]. It was obtained that two limit
cycles (a stable L* and an unstable L) are born for a critical value of the follower force.
Also, when the magnitude of the follower force decreases, the limit cycles move toward each
other.

In this paper we are interested in the stability and bifurcation behavior of double
inverted pendulum with follower force. Here (following [13]), the differential equations of
motion of the inverted pendulum have the form
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where ¢, and ¢, are the generalized coordinates (the angular displacements measured from
the downward vertical) of the motion of double inverted pendulum (see Fig. 1), m, and m,
are the masses of material point P, and P,, OP, =1, and PP, =1, are the imponderable links,
O and A are the elastic and linear viscous joints, g and g, are the viscosity coefficients

representing the external friction in the lower joint O and in the intermediate joint A, c is the
stiffness at the upper and of the pendulum, c, and c, are the stiffness of the spiral springs in

the joints O and A, and Fi is the follower force, respectively.

If the angles ¢, and ¢, are small (i.e. ¢, ~0°-6" and ¢, ~0°-6"), (1) can be
linerized by let sing =g, cosg =1sing, =p,, cosp, =1,sin(p, —p,)=p, —p, and
cos((p1 —(pz):l. After substitution of the previous equalities into (1) and accomplishing some
transformations, the system (1) takes the form
@) ¢1 =-q ¢1+ a, ¢2+ a0 +a,p, —ap ¢1+ a,p, ¢12’

(/52 =a, ¢1_ a, ¢2_ (P, — 8,0, + 8,0, (012_ a,9, (plz’
where

-~ »@Ml

Figure 1. Schematic diagram of the motion of a double inverted pendulum with follower force.
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The aim of this article is to elucidate how the dynamics of the system (2) is controlled

by the follower force F, and some other critical model parameters. Thus, the plan of the

paper is as follows: in Section 2 a qualitative (bifurcation) analysis is performed. In Section 3
we explore numerically the model. Finally, in Section 4, we discuss and unify results from
previous sections.
2. Qualitative analysis

In this section, we shall consider the system (2) which present a mathematical model
of double inverted pendulum with follower force. Let us denote

(4) 21:¢1’22:¢1’23:¢2’Z4:¢2'

After substitution of (4) into (2) and accomplishing some transformations, the system (2) is
reduced to the four first-order differential equations:

Z, =1,

z,=a,2, —az,+a,2, +a,7, —a,2,2> +a,2,77,

()
s = Ly

Z.A =—a,Z, ta,Z, -2, —a,Z, + alozlzzz - 31023222,
The steady (fixed points in the phase space) states of the system (5), E = (21, 25, 73, 24) are

founded by equating the right-hand sides of (5) to zero, i.e.

(6) 7,=2,=0, zl:—%zg, z{%_agjzo.

3

It is seen that system (1) has only one fixed point in the zero, i.e.
(7) 2,=2,=2,=12,=0,

or many fixed points different from zero for z, and z, if %—ag =0. From dynamical
3
point of view, the system possesses many additional stationary points when the follower force

F, isequal to

(8)
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(9) A= (m1 +m, )gll' B= |1|2[202 + mzlzg - CIZ(Il + Iz)]
It is seen that B is different from zero if the following condition is valid

2c,+m,l.g
1,(,+1,)

Thus, a natural question that arises from the above study is, which case is the best from the
inverted pendulum stability point of view? Of course, this is the first case i.e. when the
equality (8) is not valid. Also the equilibrium state (7) must be stabilized.

In order to investigate the character of the fixed point (7), following [14] the Routh-
Hurwitz conditions for stability in this case can be written in the form

(10)

(11) p=a +a, >0,

(12) q=a,+aa, —a,—a,a, >0,
(13) r=a,a, +aa, —a,a, —a,a, >0,
(14) s=a,a,—aa, >0,

(15) R = pgr-sp’—-r?>0.

For sufficiently large values of the follower force F, (different from these in (8)) and some

other model parameters, the condition (15) can be broken. In this case the steady state (7)
becomes unstable, i.e. the well-known phenomenon “loss of stability” takes place. In terms of
the dynamical system theory there exist “soft” and “hard” loss of stability, i.e. the stability
boundaries of equilibrium states are safe and dangerous [14, 15]. Safe boundaries are such
that crossing over them leads to small quantitative changes of the system’s state and
reversible behaviour take place. Opposite, dangerous boundaries are such that very small
perturbations of the system lead to significant and irreversible changes in her behaviour. In
order to define whether the corresponding boundary of stability is safe or dangerous, it is
necessary to calculate the so-called first Lyapunov value (coefficient) Ll(/io) on the stability

boundary R=0. Here we note that when L (1,)<0 the boundary of stability is safe, and
when L (4,)>0 -dangerous. In case of fourt first-order differential equations, this value can

be determined analytically by using the formula in [14]. In our case, after accomplishing some
transformations and algebraic operations for the first Lyapunov value, we obtain the
following form

3z
(16) L1(ﬂo) = AbA {84 [30(22153 +a, (20(2152 + 0(2253)]4- Sl [a21(0{2152 + 20‘2283)"' 30‘22282 ]}’
0
where
(17) S1 = 0{;43.10 - alzzasv Sz =0, — Ay, Ss =0y — Oy, SA = a1|4a10 - allZaS'

Here, we note that
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As we can see into (16), the value of the first Lyapunov value on the boundary of stability
R =0 is negative/positive in the computed bifurcation points, which means that the boundary
of stability is safe/dangerous and therefore ‘soft’ (reversible)/’hard’ (nonreversible) stability

loss takes place.

In the following section we will calculate numerically the value of I_l(/lo) (using (16))

and demonstrate the behaviour of the model (5) which is equivalent to system (2).

3. Numerical analysis

Here we numerically calculate the value of the first Lyapunov value on the boundary
of stability R =0. After that, we numerically illustrate the stability and existence of periodic
solutions via Andronov-Hopf bifurcation (supercritical/subcritical) in model (2). Some of the
corresponding numerical values of the model parameters are taken from other reports [11-13]
in the form

m,=10[kg], m,=5[kg] I, =1.61[m} 1,=0.89[m]

20
(0) ¢,=C,=600[Nm} 4z =u,=10[Nms], ¢=900[N/m]

Our model include one additional parameter, F, [N], which we assume to vary in the
following interval F, €[220, 240] [N] It is important to note here that all values of follower

force from this interval are different from critical one (calculated in (8)), i.e. the system (5)
has only one fixed point. The initial conditions of all variables in our model are
z,=2,=2,=0and z,=0.1.

In order to compare the predictions with numerical results, the governing equations of
model (2) were solved numerically using Matlab [17]. In Figure 2, the stable solutions for the
generalized coordinates (the angular displacements measured from the downward vertical)
and velocities of the motion of double inverted pendulum are shown for F, =235. It is

evident that after several physically accepted fluctuations z,, z,, z, and z, approach constant
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values (equilibrium state). In other words, in this case the conditions (11)-(15) are satisfied
and the steady state of system (5) is locally asymptotically stable.

B’ 100 200 300 400 500 600 700

0.005

-0.005 §

100 200 300 400 500 600 700

Figure 2. Stability solution of system (5) at F, =235. All other model parameters are those from (20). The
time (t) is in seconds. Here we note that z, and z, are dashed lines.

Figure 3 depicts the case when the follower force F, =227.4122. The left panel

demonstrates the time behavior of the generalized coordinate (/)1(21) and the right panel of
generalized coordinate ¢2(23). It is seen that the system has periodic oscillations with period
one. In this case, the system is on boundary of stability R=0. In the theory of dynamic
system, there the system is structurally unstable. Using (16), we calculate the first Lypunov
value on boundary R=0. Hence, we obtain that L =210.34>0, i.e. the boundary of
stability R =0 is dangerous. In the case of transition through this boundary from positive
values to negative, an unstable limit cycle emerges- hard loss of stability. Inversely, in the

case of transition from negative to positive, the unstable limit cycle disappears. In the
following Figure 4 this type (hard loss of stability) is numerically demonstrated.
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Figure 3. Solution of system (5) on the boundary of stability R=0, when F, =227.4122 . The time (t) is in seconds.
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Figure 4. Hard loss of stability of system (5) for F, =220, i.e. an unstable limit cycle emerges.
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4. Conclusions

In the present study, using Lyapunov-Andronov’s theory, the problem of stability and
bifurcation behavior of an inverted pendulum with follower force was investigated. The
model resulted in four nonlinear ODEs.

The basic view that the follower force is a key factor in the dynamic behavior of the
system was confirmed by the analytical calculations and numerical simulations. From the
viewpoint of the qualitative theory of ODEs, follower force, F,, appears as a bifurcation

parameter on whose values the altered (stable or unstable) behavior of the model depends. For
follower forces smaller than bifurcation one, the steady state is unstable and an unstable limit
cycle emerges. In contrast, a follower force bigger than bifurcation one would provoke
damped oscillations around a stable steady state. We can say that in this situation follower
forces have a stabilizing role. From a dynamical perspective, the loss of stability is hard (the
boundary of stability is dangerous) and might be related to emergence of new configurations
in the inverted state.

Finally, we find a new analytical formula for the first Lyapunov value at the stability
limit. It enables one to study in detail (in a further study) the bifurcation behavior of system
(2) for other numerical values of the system’s parameters.
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YCTOMYMUBOCT U BU®YPKAIIMOHHO MOBEJEHUE HA
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lI/Iucmumym no Mexanuka- BAH, ya. ,Axao. I'. bonuee”, 6a1. 4, 1113 Cogpus,

’Bucue mpancnopmuo yuuauuwie ,, T. Kaonewxos”, yn. I. Munee Nel58, 1574 Coghus,
BBJITAPUA

Knwuoeu Oymu: obvpnamo maxano, npocieoasawja  Cuid, YCmMoUYUBOCH,
ougyprayuorHo nosedeHue

Peztome:3yuasanemo na OuHamukama Ha 0ObPHAMO MAXAL0 ¢ NPOCeOA8awd CUd
npeocmasnaea uHmepec 3a peouya HAy4Hu ooaacmu Kamo Quauka, Mexasuxa u op.
H3nonzeaviku meopusma Ha Jlanynoe-Anoponos Hue Hamupame HO8A AHATUMUYHA opmyna
3a nvpeama Jlanynosa eenuuuna Ha epanuyama Ha ycmouyusocm. Tosa 0asa 6b3M0icHOCT
da 6voe uzyueno 8 demailiu OUPYPKAYUOHHOMO NOGedeHUe HA OUHAMUYHAMA CUCmeMd Om
cnomenamusi no-eope euo. Ilposepkama Ha 6epHocmma Ha NOIY4eHUme om HAC AHATUMUYHU
pesyimamu cmasa ¢ nomMowjma Ha uucienu cumyrayuu. Hanpagsenuam uucnen ananus
NOKA36a, Ye npociedssawama Culd Uma cmaduiu3upawya OUHAMUYHA POJis, KAKMOo U moeda ue
Modice 0a ce nosasu mevpoa (Heobpamuma) 3a2yoa Ha yCmotuyuUeoCcm.
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