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Abstract: The study of dynamics of an inverted pendulum with follower force is of 

interest to several fields of physics, mechanics and engineering. Using Lyapunov-Andronov’s 
theory, we find a new analytical formula for first Lyapunov value at the boundary of stability. 
It enables one to study in details the bifurcation behavior of dynamic systems of the above 
type. We check the validity of our analytical results on the first Lypunov’s value by numerical 
simulations. Our numerical analysis suggests that follower force have stabilization dynamical 
role and hard stability loss take place. 
 
 
1. Introduction 
 Dynamical systems are the study of the long-term evolution of evolving deterministic 
systems. Evolution is function which describe the state of a system as a function of time and 
which satisfy the equation(s) of motion of the system. A system whose time evolution 
equations appear in a nonlinear form is termed nonlinear. It is widely known that almost all 
mechanical systems are nonlinear. A dynamical system may be defined as a deterministic 
mathematical prescription for evolving the state of a system forward in time (continuous 
variable or discrete integer-valued variable) [16]. 
 It is well-known that the simplest type of evolution is stationary, where the state is 
constant in time, i.e. the qualitative structure of the dynamical system flow does not change 
for sufficiently small variations of the parameters(s). Next we also know periodic evolutions, 
where after a fixed period, the system always returns to the same state. Stationary and 
periodic evolutions are regular and predictable. In some dynamical systems one meets 
evolutions (behaviors) that are not so regular and predictable. In these cases (where the 
unpredictability can be established), we speak of chaotic behavior [1]. 
 The concept of stability is based on dynamical Lyapunov’s definition which apply to 
equilibrium states as well as motions. The term ‘dynamical stability’ is somewhat ambiguous 
and on the other hand the term dynamical instability is often used to indicate dynamical 
bifurcations from an equilibrium state (local bifurcations) or global bifurcations. 
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 The study of possible changes in the structure of the orbits (evolution) of a dynamical 
system as parameters are varied is called bifurcation theory. A parameter value for which the 
flow does not have stable orbit structure is called a bifurcation value, and the system is said to 
be at a bifurcation point. Thus, a bifurcation is a change of the topological type of the system 
as its parameters pass through a bifurcation (critical) value. 

From an analytical point of view, the Andronov-Hopf bifurcation leads to the 
appearance from the equilibrium state, of small-amplitude periodic oscillations. This local 
bifurcation is the simplest one, i.e. it can be detected if fix any small neighborhood of the 
equilibrium, and can be types: (i) supercritical (soft loss of stability) and (ii) subcritical (hard 
loss of stability). In the scientific literature the local bifurcations are refered as bifurcations of 
equilibria or fixed points, although that we analyze not these points but the whole phase 
portraits near the equilibria.  
 There also global bifurcations, which cannot be detected by looking at small 
neighborhoods of fixed (equilibrium) points or cycles. 
 The study of dynamics of an inverted pendulum with follower force has a long history. 
The earliest theoretical investigation is that by Pfluger [2] who studied the effect of follower 
force on the dynamical behavior of an elastic bar. He used Euler’s concept to find the critical 
magnitude of the follower force that causes in stability of the rectilinear equilibrium mode. It 
is interesting that Pfluger obtained an unexpected conclusion (which is contradicted 
experimental observations) for missing critical load. Later, Ziegler [3-5] resolved Pfluger 
paradox by modeling an elastic cylindrical pipe with a moving fluid inside by a double simple 
pendulum with a follower force. This follower force is appeared to be responsible for the 
disagreement between Pfluger’s theoretical results and experimental observations. 
 In [6], Hagedorn examined a mathematical model with two degrees of freedom 
previously studied by Zeigler, but Zeigler’s linear damping is replaced by a nonlinear term, as 
is usual for structural damping. It is obtained there that nonlinear damping gives rise to a 
behavior similar to that due to linear damping; however the stability of zero position depends 
only on the ratio of the two damping coefficients. Using some ideas of Zeigler, in [7] the 
structure of the dissipative operators are studied in both case for classical dissipative forces- 
as defective or ideal according to whether they do or d not exceed a critical parameter. Thus, 
the necessary conditions are established for perturbations effected by small linear forces. 
Some additional results are found by Kounadis [8] using a nonlinear analysis, i.e. it is 
deduced that the critical states corresponding to both types of instability may become unstable 
if a slight material nonlinearity is included; then, the mechanism of divergence and flutter 
instability change from stable to unstable and vice versa for a critical value of the material 
nonlinearity which depends on the non-conservativeness loading parameter.  
 In the recent years, there has been particular interest in the study of nonlinear behavior 
of inverted pendulums with or not follower force [10-13]. It was obtained that two limit 
cycles (a stable +L  and an unstable −L ) are born for a critical value of the follower force. 
Also, when the magnitude of the follower force decreases, the limit cycles move toward each 
other. 
 In this paper we are interested in the stability and bifurcation behavior of double 
inverted pendulum with follower force. Here (following [13]), the differential equations of 
motion of the inverted pendulum have the form 
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where 1ϕ  and 2ϕ  are the generalized coordinates (the angular displacements measured from 
the downward vertical) of the motion of double inverted pendulum (see Fig. 1), 1m  and 2m  
are the masses of material point 1P  and 2P , 11 lOP =  and 221 lPP =  are the imponderable links, 
O and A are the elastic and linear viscous joints, 1µ  and 2µ  are the viscosity coefficients 
representing the external friction in the lower joint O and in the intermediate joint A, c is the 
stiffness at the upper and of the pendulum, 1c  and 2c  are the stiffness of the spiral springs in 

the joints O and A, and 
→

fF  is the follower force, respectively. 
If the angles 1ϕ  and 2ϕ  are small (i.e. 00

1 60 −≈ϕ  and 00
2 60 −≈ϕ ), (1) can be 

linerized by let ( ) 2121222111 sin,1cos,sin,1cos,sin ϕϕϕϕϕϕϕϕϕϕ −=−====  and 
( ) 1cos 21 =−ϕϕ . After substitution of the previous equalities into (1) and accomplishing some 

transformations, the system (1) takes the form 
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Figure 1. Schematic diagram of the motion of a double inverted pendulum with follower force. 
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 The aim of this article is to elucidate how the dynamics of the system (2) is controlled 

by the follower force 
→

fF  and some other critical model parameters. Thus, the plan of the 
paper is as follows: in Section 2 a qualitative (bifurcation) analysis is performed. In Section 3 
we explore numerically the model. Finally, in Section 4, we discuss and unify results from 
previous sections. 
2. Qualitative analysis 
 In this section, we shall consider the system (2) which present a mathematical model 
of double inverted pendulum with follower force. Let us denote 
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After substitution of (4) into (2) and accomplishing some transformations, the system (2) is 
reduced to the four first-order differential equations: 
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It is seen that system (1) has only one fixed point in the zero, i.e.  
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point of view, the system possesses many additional stationary points when the follower force 
fF  is equal to 

(8) 
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Thus, a natural question that arises from the above study is, which case is the best from the 
inverted pendulum stability point of view? Of course, this is the first case i.e. when the 
equality (8) is not valid. Also the equilibrium state (7) must be stabilized.  
 In order to investigate the character of the fixed point (7), following [14] the Routh-
Hurwitz conditions for stability in this case can be written in the form 
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For sufficiently large values of the follower force fF  (different from these in (8)) and some 
other model parameters, the condition (15) can be broken. In this case the steady state (7) 
becomes unstable, i.e. the well-known phenomenon “loss of stability” takes place. In terms of 
the dynamical system theory there exist “soft” and “hard” loss of stability, i.e. the stability 
boundaries of equilibrium states are safe and dangerous [14, 15]. Safe boundaries are such 
that crossing over them leads to small quantitative changes of the system’s state and 
reversible behaviour take place. Opposite, dangerous boundaries are such that very small 
perturbations of the system lead to significant and irreversible changes in her behaviour. In 
order to define whether the corresponding boundary of stability is safe or dangerous, it is 
necessary to calculate the so-called first Lyapunov value (coefficient) ( )01 λL  on the stability 
boundary 0=R . Here we note that when ( ) 001 <λL  the boundary of stability is safe, and 
when ( ) 001 >λL  -dangerous. In case of fourt first-order differential equations, this value can 
be determined analytically by using the formula in [14]. In our case, after accomplishing some 
transformations and algebraic operations for the first Lyapunov value, we obtain the 
following form 
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Here, we note that 
 



VII-6 

(18)  

,det,,

,,,

44434241

34333231

24232221

14131211

0

343331

242321

141311

'
24

444341

343331

141311

'
22

343332

242322

141312

'
14

444342

343332

141312

'
12

2

αααα
αααα
αααα
αααα

ααα
ααα
ααα

α
ααα
ααα
ααα

α

ααα
ααα
ααα

α
ααα
ααα
ααα

α

=∆==

−=−==
p
rb

 

and 
 

(19)

( ) ( )[ ] ( )
( )[ ] ( ) ( )( )[ ]

( )[ ] ( )[ ]

( ) ( ) ( )[ ] ( )

( ) .
4

,,0
4

,
2

,3

,,2,
,2,,2

,,,
,,,,,,

2
*
1

*
1

2
2

24697171
2

13

834631844631
2

843

6271
2

14186333827324

248
2

973233
2

421
2

41

132
2

3314222
2

21212411

p
r
spnnp

r
spn

pmmaaaaammmamaan

naaaamanamamamna
aaammannmaaaaaaaman

maaanaammaabbab
bababaabbaa

−=∆∆−=>−=

−=+−++++++−=

=−+=++−=

+++−=+−=−+−=

+−−++=+=−=

−=−−=−=−=−==

α

ααα
ααα

ααα
αααααα

 

As we can see into (16), the value of the first Lyapunov value on the boundary of stability 
0=R  is negative/positive in the computed bifurcation points, which means that the boundary 

of stability is safe/dangerous and therefore ‘soft’ (reversible)/’hard’ (nonreversible) stability 
loss takes place. 
 In the following section we will calculate numerically the value of ( )01 λL  (using (16)) 
and demonstrate the behaviour of the model (5) which is equivalent to system (2). 
 
3. Numerical analysis 
 Here we numerically calculate the value of the first Lyapunov value on the boundary 
of stability 0=R . After that, we numerically illustrate the stability and existence of periodic 
solutions via Andronov-Hopf bifurcation (supercritical/subcritical) in model (2). Some of the 
corresponding numerical values of the model parameters are taken from other reports [11-13] 
in the form 
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Our model include one additional parameter, fF  [ ]N , which we assume to vary in the 
following interval [ ]NFf ]240,220[∈ . It is important to note here that all values of follower 
force from this interval are different from critical one (calculated in (8)), i.e. the system (5) 
has only one fixed point. The initial conditions of all variables in our model are 

0421 === zzz  and 1.03 =z .  
 In order to compare the predictions with numerical results, the governing equations of 
model (2) were solved numerically using Matlab [17]. In Figure 2, the stable solutions for the 
generalized coordinates (the angular displacements measured from the downward vertical) 
and velocities of the motion of double inverted pendulum are shown for 235=fF . It is 
evident that after several physically accepted fluctuations 321 ,, zzz  and 4z  approach constant 
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values (equilibrium state). In other words, in this case the conditions (11)-(15) are satisfied 
and the steady state of system (5) is locally asymptotically stable.  

      

 
Figure 2. Stability solution of system (5) at 235=fF . All other model parameters are those from (20). The 
time (t) is in seconds. Here we note that z2 and z4 are dashed lines. 
 
 Figure 3 depicts the case when the follower force 4122.227=fF . The left panel 
demonstrates the time behavior of the generalized coordinate ( )11 zϕ  and the right panel of 
generalized coordinate ( )32 zϕ . It is seen that the system has periodic oscillations with period 
one. In this case, the system is on boundary of stability 0=R . In the theory of dynamic 
system, there the system is structurally unstable. Using (16), we calculate the first Lypunov 
value on boundary 0=R . Hence, we obtain that 034.2101 >=L , i.e. the boundary of 
stability 0=R  is dangerous. In the case of transition through this boundary from positive 
values to negative, an unstable limit cycle emerges- hard loss of stability. Inversely, in the 
case of transition from negative to positive, the unstable limit cycle disappears. In the 
following Figure 4 this type (hard loss of stability) is numerically demonstrated.  
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Figure 3. Solution of system (5) on the boundary of stability R=0, when 4122.227=fF . The time (t) is in seconds. 

        

 
Figure 4. Hard loss of stability of system (5) for 220=fF , i.e. an unstable limit cycle emerges. 
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4. Conclusions 
 In the present study, using Lyapunov-Andronov’s theory, the problem of stability and 
bifurcation behavior of an inverted pendulum with follower force was investigated. The 
model resulted in four nonlinear ODEs.  
 The basic view that the follower force is a key factor in the dynamic behavior of the 
system was confirmed by the analytical calculations and numerical simulations. From the 
viewpoint of the qualitative theory of ODEs, follower force, fF , appears as a bifurcation 
parameter on whose values the altered (stable or unstable) behavior of the model depends. For 
follower forces smaller than bifurcation one, the steady state is unstable and an unstable limit 
cycle emerges. In contrast, a follower force bigger than bifurcation one would provoke 
damped oscillations around a stable steady state. We can say that in this situation follower 
forces have a stabilizing role. From a dynamical perspective, the loss of stability is hard (the 
boundary of stability is dangerous) and might be related to emergence of new configurations 
in the inverted state.  
 Finally, we find a new analytical formula for the first Lyapunov value at the stability 
limit. It enables one to study in detail (in a further study) the bifurcation behavior of system 
(2) for other numerical values of the system’s parameters. 
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УСТОЙЧИВОСТ И БИФУРКАЦИОННО ПОВЕДЕНИЕ НА 
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БЪЛГАРИЯ 
 

Ключови думи: обърнато махало, проследяваща сила, устойчивост, 
бифуркационно поведение 

Резюме:Изучаването на динамиката на обърнато махало с проследяваща сила 
представлява интерес за редица научни области като физика, механика и др. 
Използвайки теорията на Ляпунов-Андронов ние намираме нова аналитична формула 
за първата Ляпунова величина на границата на устойчивост. Това дава възможност 
да бъде изучено в детайли бифуркационното поведение на динамичната система от 
споменатия по-горе вид. Проверката на верността на получените от нас аналитични 
резултати става с помощта на числени симулации. Направеният числен анализ 
показва, че проследяващата сила има стабилизираща динамична роля, както и това че 
може да се появи твърда (необратима) загуба на устойчивост. 
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