

Механика Транспорт Комуникации

Научно списание

ISSN 1312-3823 том 10, брой 3/2, 2012 г. статия № 0699 <u>http://www.mtc-aj.com</u>

ОПРЕДЕЛЯНЕ НА КРИТИЧНИ ТОВАРНИ ЗОНИ В ДИСКРЕТНИ СФЕРИЧНИ КУПОЛИ С ИЗПОЛЗВАНЕ НА ПОВЪРХНИНИ НА ВЛИЯНИЕ

Анита Хандрулева, Банко Банков, Константин Казаков, Владимир Матуски anita_handruleva@vsu.bg, bankov@vsu.bg, kazakov@vsu.bg, vmatuski@vsu.bg

Висше строително училище "Любен Каравелов" град София, ул. Суходолска 175 БЪЛГАРИЯ

Ключови думи: дискретни сферични куполи, критични товарни зони, повърхнини на влияние

Резюме: В тази статия са изследвани повърхнините на влияние за дискретни сферични куполи. Като обекти на изследване са разгледани пет представители на дискретни куполи, за генерирането на които са използвани frame крайни елементи. Изчислителните модели се различават по морфологията на структурната решетка. Избрани са пръти в меридианно и паралелно направление, както и диагонали, за които са построени повърхнините на влияние от вертикален към сферичната повърхност товар. Изследването и графичното изобразяване е проведено с програмен продукт, базиран на Метод на крайните елементи, по статичен и кинематичен начин. За оценка на повърхнините на влияние за усилия в елементите от различните изчислителни модели са въведени следните оценъчно-количествени показатели: абсолютна плътност; натискова плътност; опънна плътност. Въз основа на тези показатели са определени следните коефициенти на участие: коефициент на натискова активизация; коефициент на опънна активизация. Резултатите са представени в графичен и табличен вид.

1. Увод

Повърхнина на влияние (ПВ) за усилие (опорна реакция, прътово усилие, огъващ момент, напречно или нормално усилие), наричаме тримерната графика, която отразява изменението на тази величина, като функция от положението на подвижна съсредоточена сила с единична големина и постоянно направление, обхождаща "пътна" повърхнина.

При плоски пространствени прътови системи тя е съвкупност от линии на влияние, построени за отделни взаимно ортогонални сечения през равни интервали върху площта на изследвания обект. При прътовите куполи обаче възникват редица затруднения, защото разстоянието между сеченията намалява по височина на меридиана, а геометричната област, върху която се строи ПВ е с двойна кривина и трябва да се намери "четлива" форма за изобразяването ú. Въпрос ът е по какъв начин да си изобрази ПВ – дали като проекция върху хоризонтална равнина, която илюстрира

недостатъчно четливо изменението на ПВ в зоните около опорният пръстен или в картографска проекция - чрез разгъване на сферичната повърхност върху вертикална равнина. В този случай разстоянията между меридианите близо до върха са силно преувеличени и деформират повърхността. Трета възможност е аксонометричното изобразяване на купола в избран поглед, като ординатите на повърхнината се нанасят вертикални. Тази възможност е възприета за по-нататъшно представяне. Пресмятането на ординатите на тази графика за пространствени системи по ръчен способ е почти невъзможно, поради високата им статическа неопределимост по метода на преместванията и метода на силите. С използуването на съвременни софтуерни програми по МКЕ (SAP2000, ANSYS и др.), изчисляването на ординатите на повърхнината на влияние за определено усилие обаче вече е улеснено максимално. Както е известно от строителната статика, съществуват три метода за построяване на линии на влияние, които могат да се приложат и за построяване на повърхнините на влияние: статичен, кинематичен и комбиниран метод.

При статичният метод се проследява изменението на разглежданата величина по стойност и знак при промяна на местоположението на подвижна единична сила в дефинирани пътни участъци. За всяко положение на тази сила се записва уравнението за равновесие и се пресмята търсената реакция, усилие и т.н.

Кинематичният метод е основан на принципа на възможните премествания, при който се записват уравненията за работата на силите, действащи върху системата предварително превърната в механизъм чрез отстраняване връзката, носеща усилието.

2. Основни цели и задачи, свързани с изследването на повърхнините на влияние:

• да се очертаят зоните за получаване на екстремни /натискови и опънни/ стойности за усилията в прътите от купола с различна морфология на структурната решетка под действие на вертикален към сферичната повърхнина товар;

• да се о пределят зо ните на ПВ, в които натоварването не влияе съществено върху изследваното прътово усилие, което би довело до опростяване на процедурата за търсене на екстремни усилия;

• да се изясни ролята на симетричен, обратно-симетричен и локален товар върху състоянието на прътите;

• повърхнините на влияние да се използуват за изследване на куполите в стадий на гранично равновесие (загуба на устойчивост) и при изследване на загуба на носимоспособност на елементите.

3. Описание на избраните изчислителни модели

Като обекти за изследване на повърхнини на влияние в пространствени прътови конструкции са разгледани пет представители на куполи. Куполите са условно означени съответно с *К.1*÷*К.5*, показани на Фиг.1.

При генерирането на моделите са приети следните фиксирани параметри, виж Фиг.2.

- диаметър на основата D=30m;
- диаметър на ключовия пръстен $r_k = 1,65m$;
- централен полуъгъл 50° с кореспондираща височина 7*m*;
- цикличен ъгъл при основата $\theta = 15^{\circ}$,
- брой паралели, разделящи меридианните линии (вътрешни пръстени) *n* = 7;
- корава връзка между елементите от структурната решетката.

За всички елементи на изследваните куполи са приети тръбни профили с еднакви геометрични характеристики на напречните сечения.

Избрани са пръти в меридианно и паралелно направление, както и диагонали, за които са построени ПВ от вертикален към сферичната повърхност товар. В меридианно направление елементите са условно означени с R1÷R8 по височина, в пръстеновидно (паралелно) – с N1÷N7, а диагоналите – с D1÷D8.

Изследването и графичното изобразяване е проведено с програмен продукт базиран на Метод на крайните елементи SAP2000 v.15 по статичен и кинематичен метод.

Фиг.1. Избрани представители на еднослойни сферични куполи

Фиг.2. Геометрични характеристики на изчислителните модели

4. Сравнителен анализ на получените резултати

На фигури от Фиг.3 до Фиг.6 са показани пространствени изображения на повърхнини на влияние за осово усилието в съответен елемент.

Фиг.6. Избрани пръти в меридианно, паралелно и диагонално направление от куполи К.3, К.4 и К.5

Фиг.3. Повърхнини на влияние за нормално усилие, построени по статичен метод за купол К.1

Фиг.4. Повърхнини на влияние за нормално усилие, построени по статичен метод за купол К.2

Фиг.5. Повърхнини на влияние за нормално усилие, построени по статичен метод за купол К.3

Фиг.7. Повърхнини на влияние за нормално усилие, построени по статичен метод за купол К.5

На фигури от Фиг.8 до Фиг.14 е използуван и друг подход за илюстриране повърхнината на влияние за нормално усилие чрез прилагане на кинематичен метод.

При тази визуализация ясно се очертават зоните на опънна и натискова активизация в съответния елемент.

Кинематичният метод е основан на принципа на възможните премествания (ПВП), при който се записват уравненията за работата на силите, действащи върху системата предварително превърната в механизъм чрез отстраняване връзката R, носеща усилието. Както е известно, съгласно ПВП: $F.\overline{\delta}_{f} + R.\overline{\delta}_{R} = 0$.

При F=1 получаваме:

$$R = -\frac{\delta_f}{\overline{\delta}_R}$$
, където:

 $\bar{\delta}_{f}$ е преместване на приложната точка на подвижната сила, проектирано по нейното направлението т.е. съвкупност от проектираните премествания на всички обходени от силата F точки от пътя,

 $\overline{\delta}_R$ е взаимно преместване в приложните точки на усилието R, проектирано по направлението му.

При възможно преместване $\overline{\delta}_R = -1$ повърхнината на проектираните премествания ще е идентична с повърхнината на влияние за усилието: "R "= " $\overline{\delta}_f$ ".

Иначе казано повърхнината на влияние се определя като еластична повърхнина - диаграма на преместванията на точките от възлите на конструкцията при отрицателно единично взаимно преместване или завъртване по направление на усилието.

Фиг. 8. Повърхнина на влияние за нормално усилие в елемент N1 от купол К.1, построена по кинематичен метод

Фиг. 9. Повърхнина на влияние за нормално усилие в елемент N2 от купол К.1, построена по кинематичен метод

Фиг. 10. Повърхнина на влияние за нормално усилие в елемент N3 от купол К.1, построена по кинематичен метод

90 45 -0 -135 -130 -135 -140 -135 -340 -405 -405 -405

Фиг. 11. Повърхнина на влияние за нормално усилие в елемент N4 от купол К.1, построена по кинематичен метод

Фиг. 12. Повърхнина на влияние за нормално усилие в елемент N5 от купол К.1, построена по кинематичен метод

Фиг. 13. Повърхнина на влияние за нормално усилие в елемент N6 от купол К.1, построена по кинематичен метод

Фиг. 14. Повърхнина на влияние за нормално усилие в елемент N7 от купол К.1, построена по кинематичен метод

След обработка на резултатите (в случая на ординатите η_i от повърхнините на влияние) за оценка на ПВ за усилия в елементите от различните изчислителни модели се разглеждат следните оценъчно-количествени показатели, виж Табл.1÷Табл.13:

- Абсолютна плътност $D_a = \sum |\eta_i|;$
- Натискова плътност $D_c = \sum (-\eta_i);$
- Опънна плътност $D_t = \sum(\eta_i)$.

Въз основа на тези показатели са определени следните коефициенти на участие:

- Коефициент на натискова активизация $K_c = D_c / D_a$;
- Коефициент на опънна активизация $K_t = D_t / D_a$.

Купол К.1	Елемент N1	Елемент N2	Елемент N3	Елемент N4	Елемент N5	Елемент N6	Елемент N7	Елемент N8
Абсолютна плътност	10,04093	10,77651	13,63414	17,10597	22,36825	28,29884	23,40680	55,29184
Натискова плътност	3,36861	4,46424	5,64791	7,40389	9,50266	11,88630	15,31720	47,24420
Опънна плътност	6,67232	6,31227	7,98623	9,70208	12,86559	16,41257	8,08963	8,04764
Коефициент на натискова активизация	0,33549	0,41426	0,41425	0,43282	0,42483	0,42003	0,65439	0,85445
Коефициент на опънна активизация	0,66451	0,58574	0,58575	0,56718	0,57517	0,57997	0,34561	0,14555

Таблица 1. Оценъчно-количествени показатели и коефициенти на участие за N1÷N8 от К.1

Купол К.1	Елемент							
Rynon Rif	R1	R2	R3	R4	R5	R6	R7	R8
Абсолютна плътност	17,20448	17,23988	17,44092	18,47907	20,17798	22,34387	23,97323	19,36880
Натискова плътност	14,06310	14,04160	14,03370	14,56140	15,47230	16,81900	18,11040	14,81860
Опънна плътност	3,14142	3,19832	3,40724	3,91768	4,70566	5,52487	5,86281	4,55018
Коефициент на натискова	0.81741	0.81448	0 80464	0 78799	0 76679	0 75273	0.75544	0 76508
активизация	0,01741	0,01440	0,00404	0,70777	0,70077	0,75275	0,75544	0,70500
Коефициент на опънна	0 18250	0 18552	0 10536	0.21201	0 22221	0.24727	0.24456	0 22402
активизация	0,18239	0,18552	0,19550	0,21201	0,23321	0,24727	0,24430	0,23492

Таблица 2. Оценъчно-количествени показатели и коефициенти на участие за R1÷R8 от К.1

Купол К.2	Елемент							
Купол К.2	N1	N2	N3	N4	N5	N6	N7	N8
Абсолютна плътност	13,94943	15,28443	17,58251	20,35771	25,16538	32,66263	28,08289	50,77640
Натискова плътност	5,43306	6,56779	7,59599	8,98712	10,81070	14,10390	17,56560	44,36270
Опънна плътност	8,51637	8,71664	9,98652	11,37060	14,35473	18,62368	10,51733	6,41370
Коефициент на натискова активизация	0,38948	0,42970	0,43202	0,44146	0,42959	0,43181	0,62549	0,87369
Коефициент на опънна активизация	0,61052	0,57030	0,56798	0,55854	0,57042	0,57018	0,37451	0,12631

Таблица 3. Оценъчно-количествени показатели и коефициенти на участие за N1÷N8 от К.2

Купол К.2	Елемент R1	Елемент R2	Елемент R3	Елемент R4	Елемент R5	Елемент R6	Елемент R7	Елемент R8
Абсолютна плътност	10,91975	12,11153	14,66208	16,20706	16,98582	17,48466	19,11638	16,34712
Натискова плътност	10,84410	10,87240	12,35200	13,19060	13,70250	14,22770	15,48050	14,06200
Опънна плътност	0,07567	1,23910	2,31005	3,01642	3,28328	3,25697	3,63584	2,28513
Коефициент на натискова активизация	0,99307	0,89769	0,84245	0,81388	0,80670	0,81372	0,80980	0,86021
Коефициент на опънна активизация	0,00693	0,10231	0,15755	0,18612	0,19330	0,18628	0,19019	0,13979

Таблица 4. Оценъчно-количествени показатели и коефициенти на участие за R1÷R8 от К.2

Kymon K 2	Елемент							
Купол К.2	D1	D2	D3	D4	D5	D6	D7	D8
Абсолютна плътност	12,12255	13,03276	14,66877	16,75229	19,15772	22,32672	24,49630	26,00237
Натискова плътност	5,43281	6,83461	7,39514	5,43565	9,60125	11,23020	13,18520	13,91980
Опънна плътност	6,69974	6,19814	7,27363	8,31664	9,55647	11,09653	11,31107	12,08256
Коефициент на натискова	0,44816	0,52442	0,50414	0,32447	0,50117	0,50299	0,53825	0,53533
активизация								
Коефициент на опънна	0 55267	0.47558	0.49586	0 49645	0.49883	0 49701	0.46175	0 46467
активизация	0,33207	0,47550	0,49500	0,47045	0,47005	0,49701	0,40175	0,40407

Таблица 5. Оценъчно-количествени показатели и коефициенти на участие за D1÷D8 от К.2

Купол К З	Елемент							
Купол К.5	N1	N2	N3	N4	N5	N6	N7	N8
Абсолютна плътност	13,78551	15,19409	17,58043	20,38176	25,09886	33,40569	24,65149	49,85031
Натискова плътност	5,14780	6,70759	7,65266	9,00621	10,76776	14,64770	16,02715	43,99518
Опънна плътност	8,63771	8,48650	9,92777	11,37555	14,33110	18,75799	8,62434	5,85514
Коефициент на натискова	0 37342	0.44146	0.43529	0.44188	0.42901	0.43848	0.65015	0.88255
активизация	0,37342	0,44140	0,43527	0,44100	0,42701	0,+50+0	0,05015	0,00255
Коефициент на опънна	0.62658	0.55854	0 56471	0 55812	0 57000	0 56152	0 3/085	0 11745
активизация	0,02038	0,55854	0,30471	0,33612	0,37099	0,50152	0,54985	0,11745

Таблица 6. Оценъчно-количествени показатели и коефициенти на участие за N1÷N8 от К.3

Купол К 3	Елемент								
Купол К.5	R1	R2	R3	R4	R5	R6	R7	R8	
Абсолютна плътност	13,59671	15,71309	17,55100	19,47230	21,79930	24,27069	23,25710	22,01715	
Натискова плътност	12,24556	13,27868	14,08001	15,03633	16,25997	17,76139	17,56269	15,43090	
Опънна плътност	1,35115	2,43441	3,47099	4,43597	5,53933	6,50930	5,69442	6,58625	
Коефициент на натискова активизация	0,90063	0,84507	0,80223	0,77219	0,74589	0,73180	0,75515	0,70086	
Коефициент на опънна активизация	0,09937	0,15493	0,19777	0,22781	0,25411	0,26820	0,24485	0,29914	
T_{2}									

Таблица 7. Оценъчно-количествени показатели и коефициенти на участие за R1÷R8 от К.3

Купол К.З	Елемент							
Rynon Rie	D1	D2	D3	D4	D5	D6	D7	D8
Абсолютна плътност	11,77050	12,95688	14,66658	16,64650	19,08291	21,93817	21,39204	20,65200
Натискова плътност	5,87154	6,48172	7,33531	8,32488	9,55088	10,98795	10,82713	10,93716
Опънна плътност	5,89896	6,47516	7,33127	8,32162	9,53203	10,95022	10,56491	9,71484
Коефициент на натискова	0.49883	0 50025	0.50014	0 50010	0 500/19	0 50086	0 50613	0 52959
активизация	0,47005	0,50025	0,50014	0,50010	0,500+2	0,50000	0,50015	0,52757
Коефициент на опънна	0 50117	0 49975	0 49986	0 49990	0 49951	0 49914	0 49387	0 47041
активизация	0,00117	0,17775	0,17700	0,17770	0,17751	0,17714	0,12507	0,17041

Таблица 8. Оценъчно-количествени показатели и коефициенти на участие за D1÷D8 от К.3

Кунол К 4	Елемент							
Купол К.4	N1	N2	N3	N4	N5	N6	N7	N8
Абсолютна плътност	15,03210	15,92384	17,74967	20,13210	25,00676	33,72700	24,82763	49,56652
Натискова плътност	3,61882	5,07217	6,11569	7,54800	9,68622	13,99151	15,53811	43,87418
Опънна плътност	11,41328	10,85167	11,63398	12,58410	15,32054	19,73549	9,28952	5,69234
Коефициент на натискова активизация	0,24074	0,31853	0,34455	0,37492	0,38734	0,41485	0,62584	0,88516
Коефициент на опънна активизация	0,75926	0,68147	0,65545	0,62508	0,61266	0,58515	0,37416	0,11484

Таблица 9. Оценъчно-количествени показатели и коефициенти на участие за N1÷N8 от К.4

Купол К.4	Елемент							
3	D1	D2	D3	D4	D5	D6	D7	D8
Абсолютна плътност	12,45514	14,14644	15,43102	16,80281	18,64904	21,33890	21,47089	20,90302
Натискова плътност	9,83124	10,50134	10,91412	11,43671	12,25776	13,63128	13,82737	13,01204
Опънна плътност	2,62390	3,64510	4,51690	5,36610	6,39128	7,70762	7,64352	7,89098
Коефициент на натискова активизация	0,78933	0,74233	0,70728	0,68064	0,65729	0,63880	0,64401	0,62250
Коефициент на опънна активизация	0,21067	0,25767	0,29272	0,31936	0,34271	0,36120	0,35599	0,37750

Таблица 10. Оценъчно-количествени показатели и коефициенти на участие за D1÷D8 от К.4

Kymon V 5	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент
Купол к.з	N1	N2	N3	N4	N5	N6	N7	N8
Абсолютна плътност	5,94687	9,70829	12,57190	16,13823	22,32285	31,08551	26,44220	50,95880
Натискова плътност	2,75071	3,22188	4,18626	5,74846	7,97296	11,66974	15,40918	44,59017
Опънна плътност	3,19615	6,48640	8,38564	10,38977	14,34989	19,41577	11,03302	6,36864
Коефициент на натискова активизация	0,46255	0,33187	0,33299	0,35620	0,35717	0,37541	0,58275	0,87502
Коефициент на опънна активизация	0,53745	0,66813	0,66701	0,64380	0,64283	0,62459	0,41725	0,12498

Таблица 11. Оценъчно-количествени показатели и коефициенти на участие за N1÷N8 от К.5

Кунол К 5	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент
Кунол К.5	R1	R2	R3	R4	R5	R6	R7	R8
Абсолютна плътност	17,65889	14,84072	16,52263	16,65483	15,75835	13,28647	8,61867	4,27336
Натискова плътност	16,81943	12,10175	12,98062	12,69113	11,76944	9,97715	6,71130	3,52352
Опънна плътност	0,83946	2,73897	3,54201	3,96370	3,98891	3,30932	1,90737	0,74984
Коефициент на натискова активизация	0,95246	0,81544	0,78563	0,76201	0,74687	0,75093	0,77869	0,82453
Коефициент на опънна активизация	0,04754	0,18456	0,21437	0,23799	0,25313	0,24907	0,22131	0,17547

Таблица 12. Оценъчно-количествени показатели и коефициенти на участие за R1÷R8 от К.5

Купол К.5	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент	Елемент
	D1	D2	D3	D4	D5	D6	D7	D8
Абсолютна плътност	9,43303	7,16547	7,84262	8,79740	10,04767	11,88913	14,06436	15,47554
Натискова плътност	2,13488	4,29967	4,39972	5,10105	6,00525	7,31867	9,05205	9,72706
Опънна плътност	7,29814	2,86580	3,44290	3,69635	4,04242	4,57046	5,01231	5,74848
Коефициент на натискова активизация	0,22632	0,60005	0,56100	0,57984	0,59768	0,61558	0,64362	0,62854
Коефициент на опънна активизация	0,77368	0,39995	0,43900	0,42016	0,40232	0,38442	0,35638	0,37146

Таблица 13. Оценъчно-количествени показатели и коефициенти на участие за D1+D8 от К.5

5. Заключение и изводи

Повърхнините на влияние дават ясна представа за приноса на определено натоварване върху крайната стойност на усилието в съответен елемент. Лесно могат да се определят зоните на натоварване с цел получаване на гранична стойност на нормалното усилие в елемент от решетката. От построените ПВ е видно, че най-голям принос върху нормалното усилие за разглеждан елемент оказва зоната в непосредствена близост до него. С отдалечаване на приложните точки на силите се наблюдава затихване на влиянието, като този ефект е пространствен и зависи от коравината на структурната решетка. Очевидно, колкото ПВ е по-концентрирана в близка област около даден елемент (с бързо "затихване"), толкова по-корава е куполната система. Изведените коефициенти на натискова и опънна активизация ясно показват каква част от натоварената площ на купола води до натиск или опън в елемента. Лесно е да се проследи, че за елемент R.5 от купол К.1 77% от товарната площ води до натискова активизация и едва 23% до опънна. С други думи, при равномерно разпределен симетричен товар, зоните на опънна активизация ще доведат до намаляване на нормалното усилие в елемента с 23%. Аналогични заключения могат да се направят за всеки елемент на база изведените коефициенти.

ЛИТЕРАТУРА

[1.] Банков Б.П., Строителна статика част I и част II, УАСГ, София, 2001.

[2.] Банков Б.П., Теория на еластичността, устойчивост и динамика на еластичните системи, УАСГ, София, 2004.

[3.] Казаков К.С., Теория на еластичността, устойчивост и динамика на строителните конструкции, Академично издателство "Проф. Марин Дринов", София, 2010.

[4.] Gioncu V. Balut. N: Instability Behavior of Single Layer Reticulated Shell, Int. Journal of Space Structures, Vol.7, No.4, 1992, p.243-250.

[5.] Gioncu V.: Buckling of Reticulated Shell:State of-the Art, Int. Journal of Space Structures, Vol.10, No.1, 1995, p.1-37.

[6.] Suzuki T., Ogawa T., Ikarashi K.: Elasto-Plastic Buckling Analysis of Rigidly Jointed Single Layer Reticulated Domes, Int. Journal of Space Structures, Vol.7, No.4, 1992, p.363-367.

[7.] Suzuki T., Ogawa T., Ikarashi K.: Elasto-Plastic Buckling Analysis of Rigidly Jointed Single Layer Reticulated Domes with Random Initial Imperfections, Int. Journal of Space Structures, Vol.7, No.4, 1992, p.265-273.

[8.] Dubina D.: Computation Models and Numerical Solution procedures for Nonlinear Analysis of Single Layer Laticce Shell, Int. Journal of Space Structures, Vol.7, No.4, 1992, p.321-333.

[9.] Levy R., Hanaor A., Rizzuto N.: Experimental Investigation of Prestresing in Double-Leyer Grids, Int. Journal of Space Structures, Vol.9, No.1, 1994, p.21-25.

[10.] Tegola A. Ombres L., Pecora C.: Minimum Weight Design of Reticular Space Structures: A Computer Aided System, Int. Journal of Space Structures, Vol.9, No.4, 1994, p.179-189.

[11.] Agerskov H.: Optimum Geometry Design of the Space Trusses, Journal of Structural Engineering, 1996, p.1454-1463.

[12.] Lederer F.: Priestorove ocelove konsrtukcie, Bratislava, 1981.

[13.] Ueki T., Kato S., Kubodera I., Mukaiyama Y.: Study on the Elastic and Elasto-Plastic Buckling Behavior of Single Layered Domes Composed of Members having Axial and Bending Springs at Both Ends, Proceedings of the IASS, Vol. III, Copenhagen, 1991, p 93-100.