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Abstract: The aim of the presented investigation is to demonstrate the influence 

of lubricants local inertia forces on the bearing performance. The 2-D model of HD 
journal bearing in isothermal and isoviscous conditions is considered. The bearing 
shaft is covered with thin resilient layer and its elastic distortions are taken into 
consideration. The elasticity part of the problem is investigated in accordance with 
Winkler hypothesis. The generalized Reynolds equation is obtained by Fourier 
transform methods. The results demonstrate the dynamic film effect. 

 
 
1. INTRODUCTION 
Most fluid film bearing analyses are based on the assumption that the 

contribution of the inertia forces to the bearing performance is negligible. It is 
important to note a fact that for analysis of dynamically loaded journal bearings the 
effect of local inertia forces could be importance [1, 2]. This additional inertia effects 
are due to the unsteady velocity changes. However, this not mean, that the so-
mentioned contribution is of the same order as the contribution of the shearing forces. 
In the studies, which deal the acceleration effects, the models are referred only to one-
dimensional bearing with rigid surfaces. 

The current paper presents elastohydrodynamic solution for a dynamically 
loaded HD finite journal bearing (2-D problem). The bearing shaft is covered with thin 
resilient layer and its elastic distortions are of the same order of magnitude as the film 
thickness. 

The objective is to demonstrate the influence of local inertia terms of the 
lubricant on the HD pressure distribution and on the load capacity parameter values.  

 UK-1.1



It is assumed that the material of the layer on the shaft deforms linearly 
according to Winkler hypothesis. 

The generalized Reynolds equation for the pressure distribution is obtained by 
Fourier transform methods. The differential equation is solved numerically by FDM 
and iterative technique. The solution is extended to prescribed loci of the shaft centre 
as the results demonstrate the dynamic film effect. 
 
Notations: 
 

c  Radial clearance; 
d  Shaft liner thickness; 
E  Young modulus; 
e  Eccentricity 
h  Film thickness 
L  Axial length 
p  HD pressure 
r  Outer radius of shaft liner; 
t Time; 

 
 

    Fig. 1 
   Journal bearing geometry 

w,v,u  Velocity components; 
γ  Angle deviation; 
δ  Radial distortion; 
υ  Kinematical viscosity; 
η  Dynamic viscosity; 
μ  Poisson ratio; 
ρ  Density of the lubricant 
ω  Angular velocity of the shaft 
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2. FLOW EQUATIONS 

 In the case of two-dimensional journal bearing the governing equations for the 
incompressible lubricant flow with local inertia terms are: 
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Obviously, from (1.b.) follows the independence from y of the left-hand side 

terms in (1.a) and (1.c). Thus both equations become homogenous after using the 
following expressions 
(2) ; 1( , , , ) *( , ) ( , , , )u x y z t u y t f x y z t= −
(3) , 2( , , , ) *( , ) ( , , , )w x y z t w y t f x y z t= −
where 
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This lead to homogenous forms for (1.a) and (1.c), namely: 
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In accordance with [3] one of the bounded particular solutions of equations like 
(6) и (7) has a form 
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i y i
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where A  is an arbitrary constant. Since the functions 1( , , , )f x y z t  and 2 ( , , , )f x y z t  are 
unknown, it is necessary to use solutions of these functions in a general form, which 
could be achieved by applying the Fourier integrals of (8), namely 
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where 
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and ( )iA ω  are the spectral densities of  and . *( , )u y t *( , )w y t
The determination of   could be performed by the application of 

Fourier integral transforms, (where 
( 1, 2,3, 4iA i = )

ω  is the transform parameter) at taking into 
account the actual boundary conditions: 
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In applying the following Fourier transform 
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as after satisfying the boundary conditions (12.а, b, c) the expressions for the velocity 
components are obtained in the form: 
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Because of the film thickness is sufficiently small, the radial velocity 
component can be presented in a linear function: 

( ) 1 2, , , ( , , ) ( , , )v x y z t D x z t y D x z t= + , 

and through (12.d и 12.f) this velocity is written as 

(17) ( ) 1 1, , , cos sinh
hv x y z t v y r e e y

h h x
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&& θ . 

The substitution of the expressions for the u, v, w velocity components in the 
continuity equation (1.d) and integration of it across the film  

 UK-1.4



 
0

0
h u v w dy

x y z
⎛ ⎞∂ ∂ ∂

+ + =⎜ ⎟∂ ∂ ∂⎝ ⎠
∫  

yields 

(18) 
0 0

0
h h

h h
hudy u v wdy

x x z
∂ ∂ ∂

− + + =
∂ ∂ ∂∫ ∫ , 

where 

(19) ( )1 2
0

1 12
22

h
i th qudy C C th e d h

x
ωϕ ω

ϕπ

∞

−∞

∂
= + −

∂∫ ∫ ; 

(20) 3
0

1 12
22

h
i th qwdy C th e d h

z
ωϕ ω

ϕπ

∞

−∞

∂
= −

∂∫ ∫ . 

By representing the hyperbolic function ( )/ 2th hϕ  with power series in   ( )  
and after neglecting the higher order terms, the expressions (19) and (20) could be 
rewritten as  

/ 2hϕ

(21) ( )
3

1 2
0

1 2 ...
2 242

h
i th h qudy C C i e d h

x
ωω ω

υπ

∞

−∞

⎛ ⎞ ∂
= + − + −⎜ ⎟ ∂⎝ ⎠

∫ ∫ ; 

(22) 
3

3
0

1 ...
122

h
i th qwdy C h i e d h

z
ωω ω

υπ

∞

−∞

⎛ ⎞ ∂
= − +⎜ ⎟ −

∂⎝ ⎠
∫ ∫ . 

Noting that  

( )
n

n i t i t
n

di e e
dt

ω ωω =  

the above expresses are transformed to 

(24) ( )
3

1 2
0

1 2 ...
2 242

h
i th h d qudy C C i e d h

dt x
ω ω

υπ

∞

−∞

⎛ ⎞ ∂
= + − + −⎜ ⎟ ∂⎝ ⎠

∫ ∫ ; 

(25) 
3

3
0

1 ...
122

h
i th d qwdy C h i e d h

dt z
ω ω

υπ

∞

−∞

⎛ ⎞ ∂
= − +⎜ ⎟ −

∂⎝ ⎠
∫ ∫ . 

The substitution of inverse transforms (16) in (24) and (25) yields 
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After substitution of the last two expresses into (18) is obtained the partial 
differential equation for the pressure distribution, which represents a generalized form 
of Reynolds equation 
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(29) 0cos xh c e kp h
r

δ= + + = + . 

The last term on the right-hand side of (28) is connected with the presence of 
inertia forces due to the unsteady linear velocity of the journal surface. 

By introducing the dimensionless parameters the above equation could be 
rewritten as: 
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&& & & && && & & && ⎤⎦ , 

where the non-dimensional film thickness is in a form 
(31) 1 cos hH Kε θ Π= + + . 
 
 3. NUMERICAL SOLUTION AND RESULTS 

The solution of the differential equation for pressure distribution is done by 
using finite difference method. Unknowns are the dimensionless pressure and film 
thickness at every grid point (j, k). The derivates in abovementioned equation are 
expressed via finite differences in two variables. 

The calculating procedure presupposes at the beginning un-deformability of the 
elastic layer. At this assumption the HD pressure is calculated. As result of this 
pressure the radial displacements of the liner surface points and the relevant film 
thickness are determined. The obtained values of this changed film thickness are base 
for pre-calculation of the pressure. This process is repeated until a satisfactory 
convergence rate for pressure values is reached. 

The Reynolds boundary conditions are taken and because of satisfy them the 
negative values of pressure are immediately put to zero. 

The numerical results are obtained for Newtonian fluid at different values of the 
diameter-to-length ratio and angular velocity of the precession. The other conditions 
are: 314=ω  [s-1];  [m];  [m];  [Pa.s];  [m]; 

[Pa]; 

210.15r −= 410.3c −= 210.4 −=η 310.2d −=
710.33,7E = 4,0=μ . The presented solution and results correspond only to the 

dynamic film effect ( 0ε ε= =& && ). 
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  Fig. 2 HD pressure distribution                     Fig. 3 Sommerfeld number versus  

                                      precession velocity 
 

The numerical results are shown in Figs. 2, 3. On the first of them is presented the 
HD pressure distribution at three different values of angular velocity of the precession. On 
the next figure is given variation of Sommerfeld number with precession velocity. The 
contribution of the local inertia forces is presented by plotted curves and lines, which 
correspond to 1,0λ =  (the “inertia-free” solution is marked as 0,0λ = ). 
 4. CONCLUSIONS 
 On the base of the obtained numerical results can be generalized, that the 
consideration of local inertia terms increases the values of HD pressure and Sommerfeld 
number. The maximal inertia effects on the pressure and load capacity are of order of 10-
12 %. It is evident that the contribution of local inertia forces to the HD forces is small as 
whole, but for the extreme values of pressure it is of significance. Obviously in a more 
precise bearing analysis the inertia forces should be taken into consideration. 
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