

Механика Транспорт Комуникации <sup>Научно списание</sup> ISSN 1312-3823 брой 2, 2010 г. статия № 0479 http://www.mtc-aj.com

# ПРИМЕРНО ПРИЛОЖЕНИЕ НА ЕДИНИЧНА ЛИНЕЙНА РЕГРЕСИЯ И КОРЕЛАЦИЯ В ТРАНСПОРТНИТЕ ИЗСЛЕДВАНИЯ С ИЗПОЛЗВАНЕ НА MS EXCEL

Ставри Димитров stavri\_dimitrov@hotmail.com

# Висше транспортно училище "Тодор Каблешков", катедра "Технология, организация и управление на транспорта", ул. "Гео Милев" 158, София 1574, БЪЛГАРИЯ

**Ключови думи:** приложение, статистически методи, корелационен анализ, регресионен анализ, единична (проста) линейна регресия, регресионно уравнение, научни изследвания, ms excel, mpancnopm

**Резюме:** Публикацията е допълнение към [1] и представя пример за приложението на статистическите методи корелационен и регресионен анализ в транспортните изследвания с използване на Microsoft® Excel[5]. Чрез разгледания пример са показани предимствата от използване на съвременни изчислителни програми и средства, каквито са електронните таблици, като възможна алтернатива за прилагане на обсъжданите в [1] и в настоящата публикация статистически методи при установяване наличието на връзки и зависимости между случайни величини.

# 1. Увод.

Заключителен в провежданите научни изследвания се явява етапа на обработка на събраните от изследването данни и последващ анализ на получените резултати. За успешното приключване на този етап, изследователи и научни работници си служат с някои от съществуващите статистически методи[3]. Приложението на статистически методи като регресионен и корелационен анализ е свързано със значителен обем изчисления. Извършването на т.нар. ръчни изчисления в процеса на приложението на горните методи [2,3,4] е предпоставка за забавяне в извеждането и публикуването на крайните резултати от изследването, а оттам и до забавяне на внедряването на научните постижения в практиката. С течение на времето този факт породи острата необходимост от разработване и използване за нуждите на научната общност на програмни продукти, които значително улесняват събирането, обработката, изчисленията и съхраняването на статистическите данни.

# 2. Предпоставки и начини за разрешаване на проблема.

Развитието на електронно-изчислителната техника и софтуерните продукти непрекъснато продължава да разкрива нови възможности пред учени, докторанти и студенти. За успешното извършване на изчисленията в своите изследвания, вече не е необходимо да използват калкулатори, било то и научни, тъй като в зависимост от потребностите, възможностите, предпочитанията и преследваните цели, могат да избират измежду редица софтуерни офис приложения и специализирани софтуерни пакети. Една от масово използваните от широк кръг потребители програми за математически изчисления и анализи от различно естество е офис приложението *Microsoft*® *Excel* [5] в различните му версии. В електронната таблица *MS Excel* са вградени голям брой функции и са заложени разнообразни

функционалности, чиято мощ позволява с минимални усилия и за кратко време да се решават различаващи се по своята сложност и размерност задачи от различни области, в т.ч. и в областта на транспорта. Програмата *Excel* дава възможност с голяма лекота да се приложат на практика вградените в нея статистически методи – описателна статистика, тестове за съответствие на закони за разпределение, анализ на дисперсията, корелационен и регресионен анализ – и да се извършват свързаните с тях анализи на данните. Изброените предимства и достъпността на програмата я правят предпочитана от специалисти в различни научни области.

# 3. Решение на проучения проблем.

Пример за използването на *MS Excel* за обработка и анализ на данни в научните изследвания е приложението на статистическите методи еднофакторна линейна регресия и корелация [2,3] в областта на транспорта. За целите на примера, в настоящия доклад е обсъден въпроса по изследване за наличието на връзка и установяване на аналитична зависимост между двете променливи случайни величини Y – средно време за пътуване от местоживеене до месторабота с личен лек автомобил на територията на даден град по време на час "пик" във функция от броят на регистрираните лични леки автомобили – X. Това е въпрос, който подробно е разгледан в [1], където корелационния и регресионния анализи и получените вследствие на тяхното приложение резултати са получени чрез извършване на ръчни изчисления.

Основната цел на настоящия доклад е посредством разгледания в него пример, ползвайки примерните статистически данни от [1], показани в табл. 1, да представи алтернативни начини за разрешаване на проблема по установяване на връзки и зависимости между случайни величини. Акцентът в доклада пада главно не върху ръчното, както е в [1], а върху автоматизирано с помощта на *MS Excel* извършване на изчисленията, с които е съпроводено приложението на регресионния и корелационния анализи, като изцяло се набляга на практическото приложение на тези два метода в транспорта. Докладът представлява своеобразно допълнение към [1] относно употребата на съвременни средства и инструменти като възможни алтернативи за приложението на обсъжданите статистически методи при решаване на дефинираните задачи.

|        | Таблица 1 -                        | Примерни данни        |
|--------|------------------------------------|-----------------------|
| Година | Средно време за пътуване до работа | Лични леки            |
| по ред | с индивидуален транспорт           | автомобили            |
| i      | Y і , минути                       | <i>X і</i> , хил. бр. |
| 1      | 13,0                               | 262,5                 |
| 2      | 13,3                               | 273,0                 |
| 3      | 16,5                               | 286,0                 |
| 4      | 17,4                               | 301,5                 |
| 5      | 17,9                               | 319,0                 |
| 6      | 21,4                               | 337,0                 |
| 7      | 22,1                               | 356,0                 |
| 8      | 24,0                               | 377,0                 |
| 9      | 27,3                               | 400,0                 |
| 10     | 32,6                               | 427,5                 |

С данните от табл. 1, чрез *MS Excel* последователно са проведени корелационен и регресионен анализ за установяване наличието на връзка между изследваните променливи Y и X и изчисляване на коефициента на линейна корелация  $r_{YX}$  от една страна, и от друга – изчисляване на стойностите на регресионните коефициенти  $b_0$  и  $b_1$  на линейния еднофакторен регресионен модел имащ вида

(1) 
$$\stackrel{\wedge}{Y_i}=b_0+b_1\cdot X_i$$
,

избран за математическо описание на връзката между зависимата променлива *Y* и факторната променлива *X*:

3.1. Корелационен анализ.

Стойностите на *Y* и *X* (табл. 1) служат за попълване на табл. 2, показана на фиг. 1 като част от използвания за изчисленията работен лист в средата на *Excel*.

| 1   | 1icrosoft E     | xcel - Exar      | nple App         | lication of a                      | Simple Line                       | ar Regression and Correla                                               | ation in the Tra                    | nsportation                         | Studies Usir    | ng MS Excel |             |                                                               |                                                    |                  |                    |                 |
|-----|-----------------|------------------|------------------|------------------------------------|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------|-------------|-------------|---------------------------------------------------------------|----------------------------------------------------|------------------|--------------------|-----------------|
| : 🔳 | <u>Eile E</u> d | t <u>V</u> iew ; | <u>I</u> nsert F | ormat <u>T</u> ool                 | s <u>D</u> ata <u>W</u>           | indow W <u>B</u> ! <u>H</u> elp                                         |                                     |                                     |                 |             |             |                                                               |                                                    |                  | Туре               | a questic       |
| 1   | ) 📂 🔙           | 💪 🔒 l é          | 3 🛕 🕯            | 🍣 🛍   🐰                            | 🗈 🖺 🔹 <                           | 🍠   🔊 - 🔍 -   fx 🕃                                                      | 😫 Σ - A/Z↓                          | X   🛍 🛷                             | 75% 🔹           | o 🔋 🗄 🐿     | 5 to 2 •    | o 🐚 🛛                                                         | 3 🔰 🖷                                              | 🔂   🛯 Reply w    | ith <u>C</u> hange | :s E <u>n</u> d |
| Ar  | ial             | -                | 10 🔹             | <b>в</b> <i>I</i> <u>U</u>         |                                   | 🔤   \$ % → € 🐀                                                          | 8 .00   🛊 🛊                         | 🖂 🗕 🌆 🗸                             | <u>A</u> - ] :  | > o Secur   | ity   🥭 🕉   | ً 🐢 ا 👱 ج                                                     | . KX KX                                            | <u>∠</u> ∠ <= >= | =   🔕              |                 |
|     | T33             | -                | f*               |                                    |                                   |                                                                         |                                     |                                     |                 |             |             |                                                               |                                                    |                  |                    |                 |
|     | A               | В                | С                | D                                  | E                                 | F                                                                       | G                                   | н                                   | 1               | J           | К           | L                                                             | M                                                  | N O              | P                  | Q               |
| 1   | i               | $X_i$            | $Y_i$            | $\left(X_i^{-}\overline{X}\right)$ | $\left(Y_i - \overline{Y}\right)$ | $\left(X_i^{-}\overline{X}\right)\cdot\left(Y_i^{-}\overline{Y}\right)$ | $\left(X_i - \overline{X}\right)^2$ | $\left(Y_i - \overline{Y}\right)^2$ | $X_i \cdot Y_i$ | $X_i^2$     | $\hat{Y}_i$ | $\begin{pmatrix} \land \\ Y_i - \overline{Y} \end{pmatrix}^2$ | $\begin{pmatrix} & & \\ Y_i - Y_i \end{pmatrix}^2$ | Табли            | ца 2               |                 |
| 2   | 1               | 262,5            | 13,0             | -71,5                              | -7,6                              | 539,4                                                                   | 5105,103                            | 57,003                              | 3413            | 68906       | 12,661      | 62,229                                                        | 0,115                                              |                  |                    |                 |
| 3   | 2               | 273,0            | 13,3             | -61,0                              | -7,3                              | 441,9                                                                   | 3714,903                            | 52,563                              | 3631            | 74529       | 13,821      | 45,283                                                        | 0,271                                              |                  |                    |                 |
| 4   | 3               | 286,0            | 16,5             | -48,0                              | -4,1                              | 194,2                                                                   | 2299,203                            | 16,403                              | 4719            | 81796       | 15,256      | 28,026                                                        | 1,547                                              |                  |                    |                 |
| 5   | 4               | 301,5            | 17,4             | -32,5                              | -3,2                              | 102,2                                                                   | 1053,003                            | 9,923                               | 5246            | 90902       | 16,967      | 12,836                                                        | 0,187                                              |                  |                    |                 |
| 6   | 5               | 319,0            | 17,9             | -15,0                              | -2,7                              | 39,6                                                                    | 223,503                             | 7,023                               | 5710            | 101761      | 18,899      | 2,724                                                         | 0,999                                              |                  |                    |                 |
| 7   | 6               | 337,0            | 21,4             | 3,1                                | 0,8                               | 2,6                                                                     | 9,303                               | 0,722                               | 7212            | 113569      | 20,887      | 0,113                                                         | 0,263                                              |                  |                    |                 |
| 8   | 7               | 356,0            | 22,1             | 22,1                               | 1,6                               | 34,2                                                                    | 486,203                             | 2,403                               | 7868            | 126736      | 22,984      | 5,927                                                         | 0,782                                              |                  |                    |                 |
| 9   | 8               | 377,0            | 24,0             | 43,1                               | 3,5                               | 148,5                                                                   | 1853,303                            | 11,903                              | 9048            | 142129      | 25,303      | 22,591                                                        | 1,698                                              |                  |                    |                 |
| 10  | 9               | 400,0            | 27,3             | 66,1                               | 6,8                               | 445,8                                                                   | 4362,603                            | 45,563                              | 10920           | 160000      | 27,842      | 53,178                                                        | 0,294                                              |                  |                    |                 |
| 11  | 10              | 427,5            | 32,6             | 93,6                               | 12,1                              | 1127,3                                                                  | 8751,603                            | 145,203                             | 13937           | 182756      | 30,878      | 106,678                                                       | 2,964                                              |                  |                    |                 |
| 12  | Сума:           | 3340             | 206              |                                    |                                   | 3075,775                                                                | 27858,725                           | 348,705                             | 71703           | 1143085     | 205,500     | 339,585                                                       | 9,120                                              |                  |                    |                 |
| 13  |                 |                  |                  |                                    |                                   |                                                                         |                                     |                                     |                 |             |             |                                                               |                                                    |                  |                    |                 |

Фиг. 1.Изчислителна таблица

Изчисляването на коефициента на линейна корелация  $r_{yx}$  става, след като от меню "*Tools*" (Инструменти) (фиг. 2) се избере "*Data Analysis*..."(Анализ на данни).

| 📧 Micros | oft Exc      | el - Ex | ample A    | pplica        | tion of       | a Simple          | Linear Re      | gressio      | on and I | Correla | tion in t    | he Tra | ansporta | tion Studi   | es Using I | MS E | xcel     |
|----------|--------------|---------|------------|---------------|---------------|-------------------|----------------|--------------|----------|---------|--------------|--------|----------|--------------|------------|------|----------|
| 📳 Eile   | <u>E</u> dit | ⊻iew    | Insert     | F <u>o</u> rm | at <u>T</u> o | ols) <u>D</u> ata | <u>W</u> indow | W <u>B</u> ! | Help     |         |              |        |          |              |            |      |          |
| i 🗋 💕    |              |         | <b>a</b> 🗳 | ABC           | 12,   )       | i 🗈 🛍             | - 🛷 🗆          | 9 - 0        |          |         | 🧕 Σ          | - A₂↓  | X↓   🛄   | 65%          | - 🕐        | Ę    | 🔁 ta ta  |
| Arial    |              |         | • 10 •     | B             | ΙŪ            |                   |                | \$ 9         | /o ,     | € 5.0   | .00<br>• 00. |        | •        | 🅭 - <u>A</u> | - 🛛 🗄 🕨    |      | Security |
|          |              |         |            | Фи            | г. 2.І        | Ізбор і           | на менн        | о "Ин        | істру    | мент    | и"           |        |          |              |            |      |          |

В отворилият се прозорец "*Data Analysis*" се избира функцията "*Correlation*"(фиг. 3), след което се натиска бутон "*OK*". В резултат на това действие се отваря прозореца "*Correlation*" (Корелация) (фиг. 4), в който в

| Data Analysis                                                                                                                                                                                                           | ×            | Correlation                                                                                                                                                     | ×                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Analysis Tools Anova: Single Factor Anova: Two-Factor With Replication Anova: Two-Factor Without Replication Coveriation Coveriation Coveriation Coveriation F-Test Two-Sample for Variances Fourier Analysis Histogram | OK<br>Cancel | Input<br>Input Range: [<br>Grouped By: 0<br>↓<br>Labels in first row<br>Output options<br>© Qutput Range: [<br>○ New Worksheet Ply: [<br>○ New Worksheet Ply: [ | \$B\$1:\$C\$11<br>Cancel Cancel Help |

#### Фиг. З.Прозорец "Анализ на данни"

| Фиг. 4.Прозорец | "Корелация" |
|-----------------|-------------|
|-----------------|-------------|

сheckbox "Labels in first row" се поставя отметка, а в полето "Input Range" се избира обхвата от стойности за  $X_i$  и  $Y_i$  (табл. 2), включително със заглавния ред. В случай, че потребителят желае корелационната матрица да се изведе в текущата страница (worksheet), избира радио бутон "Output Range" и посочва адреса на клетката, в която ще се разположи корелационната матрица. Накрая, за извършване на изчисленията по пресмятане на стойността на коефициента  $r_{YX}$  и извеждане на резултатите във вид на таблица (табл. 3), се натиска бутона "OK".

Таблица 3 – Корелационна матрица

|    | Xi    | Yi |  |
|----|-------|----|--|
| Xi | 1     |    |  |
| Yi | 0,987 | 1  |  |

Полученият в *Excel*, чрез използване на функцията "*Correlation*" коефициент на линейна корелация е равен на  $r_{YX} = 0,987$ .

Коефициентът  $r_{YX}$  може да се пресметне и чрез използване на вградената в *Excel* функция "*CORREL*" по следния начин: След като предварително е маркирана клетката, в която програмата *Excel* ще запише изчислената стойност, от меню "*Insert*" (фиг. 5) се избира "*Function*…"(Функция).

| 🛛 Micros | oft Excel - Example A    | Application of a Simple                     | Linear Regression and                      | Correlation in the Transp | ortation Studies Using N | 15 Excel  |
|----------|--------------------------|---------------------------------------------|--------------------------------------------|---------------------------|--------------------------|-----------|
| 📳 Eile   | Edit <u>V</u> iew Insert | ) F <u>o</u> rmat <u>T</u> ools <u>D</u> at | a <u>W</u> indow W <u>B</u> ! <u>H</u> elp |                           |                          |           |
| i 🗋 💕    | 🗒 🖪 🔒 🖪                  | , 🖤 🛍   🔏 🗈 🕻                               | L • 🧭   ∅) - (°i -   )                     | & 💽 🤮 Σ - ϟ↓ 🗛            | 🛄 🛷 65% 🛛 🗸 🕢            | 📜 i 🖬 🖬 🐿 |
| Arial    | • 10 •                   | B I U   📰                                   | E = 🔤 💲 % ,                                | € 號 🕺 🛱 📰                 | 🛛 • 🌆 • <u>A</u> • 🜉 🗄 🕨 | Security  |
|          |                          | Фиг. 4                                      | 5.Избор на меню '                          | 'Insert''                 |                          |           |

Това довежда до отваряне на прозорец "Insert Function" (фиг. 6), в който в текстовото поле "Select a function:" се избира желаната функция. В случая това е функцията "CORREL". Натиска се бутон "OK". В отвореният прозорец "Function Arguments" (фиг. 7) се въвеждат обхватите от клетки, съдържащи стойностите на променливите Y и X и се натиска бутон "OK".

| Insert Function                                                                                                           | Function Arguments                                                                                                           | × |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---|
| Search for a function:   Type a brief description of what you wank to do and then  cick Go  or select a gategory:  [All ] | CORREL<br>Array1 C2:C11 = {13;13,3;16,5;17,4;<br>Array2 [52:B11 = {262,5;273;266;301                                         |   |
| Select a function:                                                                                                        | = 0,986835711<br>Returns the correlation coefficient between two data sets.                                                  |   |
| CORREL<br>COS<br>COSH<br>CORREL(array1;array2)<br>Returns the correlation coefficient between two data sets.              | Array2 is a second cell range of values. The values should be numbers, names,<br>arrays, or references that contain numbers. |   |
|                                                                                                                           | Formula result = 0,987                                                                                                       |   |
| Help on this function OK Cancel                                                                                           |                                                                                                                              |   |

Фиг. 6.Прозорец "Въведи функция" Фиг. 7.Прозорец "Аргументи на функцията"

Както може да се види от фиг. 7, стойността  $r_{YX} = 0,987$  съответства на тази, получена чрез ползване на функционалността "*Correlation*" (табл. 3).

3.2. Регресионен анализ.

Изчисляването на стойностите на регресионните коефициенти  $b_0$  и  $b_1$  за избраното линейно уравнение на регресия, съдържащо една независима променлива, може да се извърши чрез използване на:

3.2.1. Функции "INTERCEPT" и "SLOPE".

В средата на *Excel* се избира клетката, в която функцията ще върне като резултат изчислената от нея стойност  $b_0$ , например клетка "*P6*". От меню "*Insert*" се избира "*Function*...". Отваря се прозорец "*Insert Function*" (Въведи Функция), в който се маркира функцията "*INTERCEPT*" (Отрязък) (фиг. 8). Натиска се бутон "*OK*" и в резултат на това се отваря прозорец "*Function Arguments*" (Аргументи на функцията), в който последователно се маркират, без да се включва заглавния ред, обхватите от клетки от табл. 2, съдържащи стойности за  $Y_i$  (*known\_y's*) и  $X_i$  (*known\_x's*) (фиг. 9), които са аргументи на функцията и накрая се натиска "*OK*".

| Insert Function                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Search for a function:                                                                                                                                                                   |
| Type a brief description of what you want to do and thenGo                                                                                                                               |
| Or select a gategory: All                                                                                                                                                                |
| Select a function:                                                                                                                                                                       |
| INFO                                                                                                                                                                                     |
| INI                                                                                                                                                                                      |
| Intrate                                                                                                                                                                                  |
| INTRATE                                                                                                                                                                                  |
| TPMT                                                                                                                                                                                     |
| IRR                                                                                                                                                                                      |
| INTERCEPT(known_y's;known_x's)<br>Calculates the point at which a line will intersect the y-axis by using a best-fit<br>regression line plotted through the known x-values and y-values. |
| Help on this function OK Cancel                                                                                                                                                          |

| ;17,4;<br>6;301 |
|-----------------|
| ;17,4;<br>6;301 |
| 36;301          |
|                 |
| ers or          |
| sic             |

Фиг. 8. Прозорец "Въведи функция"

Фиг. 9. Прозорец "Аргументи на функцията"

Получената чрез функцията "*INTERCEPT*" стойност е  $b_0 = -16,32$ .

За изчисляване на стойността на регресионния коефициент  $b_1$  пред фактора  $X_{i}$ , аналогично се отива в меню "Tools" -> "Function...", от където в появилият се прозорец "Insert Function" се избира функцията "SLOPE" (Наклон) (фиг. 10), след което се натиска бутона "OK". Отваря се прозореца "Function Arguments", в който отново се посочват обхватите от стойности known\_y's за  $Y_i$  и known\_x's за  $X_i$  (фиг. 11), явяващи се аргументи на функцията, не включвайки при избора заглавния ред от табл. 2.

| Insert Function                                                                                              |
|--------------------------------------------------------------------------------------------------------------|
| Search for a function:                                                                                       |
| Type a brief description of what you want to do and thenGo                                                   |
| Or select a category: All                                                                                    |
| Select a function:                                                                                           |
| SINH<br>SKEW<br>SLN<br>SLOP                                                                                  |
| SMALL SQRT SqrtPI                                                                                            |
| SLOPE(known_y's;known_x's)<br>Returns the slope of the linear regression line through the given data points. |
| Help on this function OK Cancel                                                                              |

| SLOPE                                           |                                        |                                                                          |                                                    |                                        |                                       |                       |
|-------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------|
| Knowr                                           | _ <b>y's</b>  C2                       | 2:011                                                                    |                                                    | <u>1</u>                               | = {13;13                              | ,3;16,5;17,4          |
| Knowr                                           | _ <b>x's</b>  B2                       | 2:B11                                                                    |                                                    | 2                                      | = {262,5                              | ;273;286;301          |
|                                                 |                                        |                                                                          |                                                    |                                        |                                       |                       |
|                                                 |                                        |                                                                          |                                                    |                                        | = 0,1104                              | 06165                 |
| Returns the s                                   | ope of th                              | ne linear regression                                                     | line through t                                     | he given da                            | = 0,1104<br>ita points.               | 06165                 |
| Returns the s                                   | ope of th                              | ne linear regression                                                     | line through t                                     | he given da                            | = 0,1104<br>ita points.               | 06165                 |
| Returns the s<br><b>Knowr</b>                   | ope of th<br>•_ <b>x's</b> is t        | he linear regression<br>he set of independ                               | line through t<br>ent data point                   | he given da<br>s and can b             | = 0,1104<br>ita points.<br>ie number  | 06165<br>rs or names, |
| Returns the s                                   | ope of th<br>1_ <b>x's</b> is t<br>arr | ne linear regression<br>he set of independ<br>ays, or references         | line through t<br>ent data point<br>that contain r | he given da<br>s and can b<br>iumbers. | = 0,1104<br>ita points.<br>ie number  | 06165<br>rs or names, |
| Returns the s<br><b>Knowr</b><br>Formula resull | ope of th<br>•_ <b>x's</b> is t<br>arr | he linear regression<br>he set of independ<br>ays, or references<br>0,11 | line through t<br>ent data point<br>that contain r | he given da<br>s and can b<br>iumbers, | = 0,1104<br>Ita points.<br>Ite number | 06165<br>rs or names, |

Фиг. 10.Прозорец "Въведи функция" Фиг. 11. Прозорец "Аргументи на функцията"

Върната от функцията "SLOPE" след завършване на изчисленията стойност на регресионния коефициент е  $b_1 = 0,11$ .

# 3.2.2. Функционалност "Regression".

Регресионните коефициенти  $b_0$  и  $b_1$  за използвания за целите на примера линеен еднофакторен регресионен модел, коефициента на корелация R и коефициента на детерминация  $R^2$ , както и емпиричната характеристика  $F_{e_M}$  могат да се определят с извършване на регресионен анализ с помощта на *Excel*, ползвайки функционалност "*Regression*" (Регресия), достъпна от меню "*Tools*"-> "*Data Analysis*…"->прозорец "*Data Analysis*" (фиг. 12). За целта се маркира функция "*Regression*" и натиска бутона "*OK*". Следва отваряне на прозорец "*Regression*" (фиг. 13), в който в checkbox "*Labels*" се поставя отметка, а в полетата "*Input Y Range*:" и "*Input X Range*:" се указват обхватите от клетки от



Фиг. 12. Прозорец "Анализ на данни"



табл. 2, в т.ч. и заглавния ред, съдържащи стойности за  $X_i$  и  $Y_i$ ,. Поставя се и отметка за извеждане на данни за избрания доверителен интервал ("Confidence Level:"). В рамката "Residuals" (остатъци) се поставят отметки съответно за "Residuals" (за таблица с остатъците), "Residual Plots" (за диаграма на остатъците) и "Line Fit Plots" (за диаграма с емпирични и теоретични стойности). Последното действие се състои в избиране на радио бутон "Output Range:" (обхват с резултати), в който се указва, че резултатите от изчисленията да бъдат изведени в текущата страница (worksheet), в посочената клетка (SS2). За стартиране на изчислителните процедури и извеждане на крайните резултати от изчисленията във вид на таблици и диаграми (фиг. 14) се натиска бутон "OK".



Фиг. 14. Резултати от регресионния анализ

Последователно в таблици от 4 до 7 са визуализирани следните резултати:

- в табл. 4. SUMMARY OUTPUT – стойностите на коефициента на корелация R, коефициента на детерминация  $R^2$  (R Square), коригирания коефициент на детерминация (Adjusted R Square), стандартната грешка на оценката на модела (Standard Error) и брой на наблюденията n (Observations);

- в табл. 5. ANOVA – степените на свобода v и w от числителя и знаменателя на F – отношението [3] (колона "df" – Degrees of Freedom), обяснената SSR и остатъчната девиация SSE (колона "SS" - Sum of Squares) [3], както и тяхната сума SS<sub>YY</sub> (колона "SS"), числителят и знаменателят на F – отношението (Mean Squares), емпиричната характеристика  $F_{em}$  на F - теста и наблюдаваното равнище на значимост, съответстващо на F (Significance F);

- в табл. 6. *COEFFICIENTS* – стойностите на регресионните коефициенти  $b_0$  и  $b_1$  (*Coefficients*), стандартните грешки на оценките на регресионните коефициенти (*Standard Error*), емпиричните характеристики за проверка на хипотезите за статистическа значимост на регресионните коефициенти (*t Stat*), наблюдаваните равнища на значимост (*P-value*), съответстващи на емпиричните характеристики за проверка на хипотезите за  $b_0$  и  $b_1$ , долна и горна граници на доверителните интервали (*Lower 95 %* и *Upper 95 %*) на коефициентите  $b_0$  и  $b_1$ ;

- табл. 7. RESIDUAL OUTPUT – наблюдавани стойности  $Y_i$  (Observations), предвидени стойности  $\bigwedge_{Y_i}^{\wedge}$  (Predicted) и стойностите на остатъците  $e_i$  (Residuals).

След заместване на изчислените регресионни коефициенти в линейното еднофакторно уравнение на регресия получаваме:

(2)  $Y_i = -16,32 + 0,11.X_i$ 

Диаграмите с предвидените стойности (*Line Fit Plots*) и остатъците (*Residual Plots*) освен на фиг. 14, са показани съответно и на фиг. 15 и фиг. 16.



Фиг. 15.Регресионна права



Фиг. 16. Остатъци

#### 4. Резултати и дискусия.

В резултат на извършените с използване на *MS Excel* корелационен и регресионен анализ на взетите от [1] примерни статистически данни се:

1. Установи наличие на корелация между средното време за пътуване с индивидуален транспорт Y и броят на личните автомобили X, за силата на която може да се съди от стойността на коефициента на линейна корелация  $r_{YX} = 0,989$ .

2. Установи видът и определиха стойностите на регресионните коефициенти  $b_0 = -16,32$ и  $b_1 = 0,11$  на уравнението на регресия, отразяващо връзката между зависимата променлива *Y* и фактора *X*.

3. Установи, че избрания линеен еднофакторен регресионен модел адекватно и със задоволително висока точност моделира връзката между зависимата променлива Y и независимата променлива X, за което сочат резултатите от извършения от *Excel F* – тест за адекватност на модела [3] и близката до единица стойност на коефициента на детерминация  $R^2 = 0.974$ .

#### 5. Заключение.

Резултатите, получени от приложението на статистическите методи корелация и регресия, чрез използване на програмата *MS Excel* при решаване на задачата в разгледания в настоящия доклад пример, съответстващи на получените в [1] резултати, дават основание да се направят следните изводи:

1. Използването в научните изследвания на офис приложения като *Excel*, за извършване на изчисления и анализи, има следните предимства:

- те са общодостъпни и лесни за работа програмни продукти;

- вероятността от допускане на човешки грешки е малка, тъй като изчисленията се извършват по заложени в програмата изчислителни алгоритми;

- изчисленията се извършват бързо, от порядъка на няколко секунди;

- постига се висока точност на получаваните резултати;

- крайните резултати могат да се извеждат във вид на таблици и диаграми;

- вградените в тях функции предоставят възможност на потребителя, използвайки различни техники по няколко начина да достигне до един и същи резултат.

2. При използване на офис приложения за извършване на статистически анализи трябва да се имат в предвид и някои особености:

- за да е в състояние да интерпретира получените на изхода на "черната кутия" резултати, още преди да въведе данните на входа й, потребителят трябва да е наясно с теоретичната постановка на провеждания от него анализ, както и в какво се състоят и как се извършват използваните изчислителните процедури;

- възможно е в някои програми с общо предназначение, каквато е *Excel*, да не е предвидено вграждане на функционалности за приложение на познати и използвани в математическата статистика методи за анализ на данни. Затова, когато използваните офис приложения не успяват да удовлетворят потребностите на изследователите и специалистите, алтернатива могат да бъдат създадените за тази цел специализирани статистически софтуерни пакети.

# ЛИТЕРАТУРА

[1] Димитров, С. Д., "Примерно приложение на единична линейна регресия и корелация в транспортните изследвания", научно списание "Механика, транспорт, комуникации", ВТУ "Тодор Каблешков", София, 2010 г. (под печат)

[2] Качаунов, Т. Т., "Моделиране и оптимизация на транспортните процеси", второ преработено издание, Печатница при ВТУ "Тодор Каблешков", София, 2005 г.

[3] Манов, А., "Статистика със SPSS", второ издание, Издателство "Тракия – М", София, 2001 г.

[4] Рихтер, К. Ю., Фишер, П., Шнейдер, Г., "Статистические методы в транспортных исследованиях", превод от немски, Москва, "Транспорт", 1982г.

[5] Microsoft Excel 2003 Help, Microsoft Corporation