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Abstract: The oscillations of a pendulum suspended on an elastic beam are examined. 

The mathematical pendulum is a material point suspended on an ideal rigid and massless rod. 
The upper end of the rod is connected by a joint with an elastic beam on two supports. The 
beam is considered to be perfectly elastic and massless. The system has two degrees of 
freedom. The nonlinearity is due only to a geometric nature. A nonlinear system of two 
differential equations is derived. A numerical solution was made with the mathematical 
package MatLab. The laws of motion, generalized velocities, generalized accelerations, and 
phase trajectories are obtained. The internal force in the rod as a time function is also 
determined. The dynamical coefficient for the rod is calculated. In order to continue the task 
by preparing an actual model and conducting experimental research, the projections of the 
velocity and acceleration of the material point along the horizontal and vertical axes, as well 
as their magnitudes, are determined. The obtained results are presented graphically and 
analyzed in detail. The research has a theoretical and applied character. 

 
INTRODUCTION 
The pendulum has been the subject of researches from ancient times. During the 

Renaissance, the phenomenal periodic movements of the pendulum were studied by Leonardo 
da Vinci and Galileo Galilei, [1]. 

In 1656, the Dutch scientist Christiaan Huygens constructed a pendulum clock. Such 
clocks remained the most accurate instruments for measuring time until the 1930 year, [2]. 

In 1851, Jean-Bernard Leon Foucault constructed a mathematical pendulum to prove 
the rotation of the Earth around the North-South axis, [3]. 

Analytical solutions related to the study of small and large oscillations of the 
pendulum provide a field for the development of a number of branches of Mathematics. To 
this day, many scientists, when studying the large nonlinear oscillations of the pendulum, 
apply analytical solutions, [4, 5, 6]. 

The pendulum usually has a fixed center. In publication [7] the pendulum is wrapped 
around a stationary cylinder. In this case, the length of the cord changes, and the mathematical 
pendulum has a momentary center of rotation. 

The dynamical behavior of rigid weightless rod and concentrated mass, sliding 
periodically along the axis of the rod is studied in the article [8]. 
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The dynamical behavior of rigid weightless rod and concentrated mass, moving 
simultaneously along and across the axis of the rod, according to given periodical laws is 
studied in the article [9]. 

In the present work, the rotational center of the mathematical pendulum is not fixed. It 
is connected by a joint for an ideal elastic beam. 

The main goals of this study are the following: 
1. To obtain the differential equations that describe the big oscillations of the 

pendulum and the beam taking into account the geometric nonlinearity of the model. 
2. To compile a program for numerical integration of the derived nonlinear system of 

differential equations in the area of the mathematical package MatLab, and after then, to 
perform a computer simulation. 

3. The study should be a basis for continuing the task by preparing a real pendulum 
and conducting experimental researches. 

 
DYNAMICAL MODEL 
The dynamic model of the mathematical pendulum is shown in Figs. 1. It consists of a 

material point M  with a mass m  and a perfectly rigid and weightless rod MN , which has a 
length L . The rod is connected to the simple beam AB  by a joint N . The beam has the 
length l  and stiffness of bending IE. , where E  is the modulus of elasticity (modulus of 
Young), and I  is the moment of inertia of the cross-section of the beam. The joint N  is 
located in the middle of the beam. 

The system has two degrees of freedom. The angle )(t  and the vertical displacement 
)(tw  of the joint N  are taken as independent generalized coordinates, (Fig. 1). 

In the position of stable equilibrium and rest, the joint N  coincides with the initial 
point O  that is considered the center of the fixed coordinate system yxO . In the same 
position, the rod MN  is vertical. 

 
DIFFERENTIAL EQUATIONS 
The mechanical system is conservative. Its research is carried out with the Lagrange 

equations of the second kind: 
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Fig. 1 Dynamical model of the system. 
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The kinetic energy of the pendulum is determined by the formula: 

(3)     222 cos...
2

1
sin....

2

1
wmwLmE k   . 

The full potential energy has the form: 

(4)    2
0 ..

2

1
cos1..... wcLgmwgmCE p   , 

where constC 0  is the potential energy of the system in a stable equilibrium position, and c  

is the quasi-elastic coefficient for the beam determined for point N . 
This coefficient is calculated by the formula: 

(5)  
3

.
.48

l

IE
c   . 

Formulas (3) and (4) are put in equations (1) and (2), and then the following system of 
differential equations is reached as follows: 

(6)  0..cos..sin. 2  gw
m

c
LLw   , 

(7)  0sin...sin  gLw   . 
This nonlinear system of two ordinary second-order differential equations, under 

appropriate initial conditions, is performed numerically with a specially prepared program in 
the area of the mathematical package MatLab. 

For future experimental measurements of the velocity and the acceleration of point 
M , some formulas for the algebraic projections of absolute velocity and absolute acceleration 
relative to the axes of the fixed coordinate system yxO  are needed, [10-12]. 

These expressions are the following: 

(8)   cos..Lv x  , 

(9)  wLv y   sin..  , 

(10)   sin..cos.. 2 LLa x   , 

(11)  wLLa y   cos..sin.. 2  . 

The magnitudes of the velocity and acceleration of point M  are as follows: 

(12)  22
xx vvv   , 

(13)  22
xx aaa   . 

The inner force of the rod is determined by the formula: 

(14)   LwgmS .cos.)(. 2   . 

The advantages of the numerical solution consist in the possibility to vary with the 
values of the parameters in order to obtain the desired final results. 

The numerical solution also allows optimization of some parameters, [13]. 
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NUMERICAL SOLUTION 
The numerical integration is carried out using the following numerical parameters: 

PaE 11102 ; 4810125.1 mI  ; mL 2 ; kgm 20 ; ml 20.3 . 

The initial conditions are: mw 05.00  , rad4/0  , smw /00  , srad /00  . 

The calculations are performed using an integration time, st 10 . 

 

 

Fig.2 Generalized coordinate 
][)( mtww  . 

 

Fig.3 Generalized velocity 
]/[)( smtww   . 

 

Fig.4 Generalized acceleration 
]/[)( 2smtww   . 

 

Fig.5 Generalized coordinate 
][)( radt . 

 

Fig.6 Generalized angle velocity 
]/[)( sradt  . 

 

Fig.7 Generalized angle acceleration 
]/[)( 2sradt  . 
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The fourth-order Runge-Kutta method with a fixed step at relative accuracy 610   and 
absolute accuracy 810   was used. 

Figures 2, 3, and 4 show the graphs of the generalized coordinate )(tw , the 
generalized velocity )(tw , and the generalized acceleration )(tw  as functions of time t . 

 

Fig.8 Velocity along the axis Ox  
]/[)( smtvv xx  . 

 

Fig.9 Velocity along the axis Oy  

]/[)( smtvv yy  . 

 

Fig.10 Full velocity 

  ]/[
5.022 smvvv yx  . 

 

Fig.11 Acceleration along the axis Ox  
]/[)( 2smtaa xx  . 

 

Fig.12 Acceleration along the axis Oy  

]/[)( 2smtaa yy  . 

 

Fig.13 Full acceleration 

  ]/[ 25.022 smaaa yx  . 
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Figures 2, 3 and 4 show the graphs of the generalized coordinate )(tw , the generalized 
velocity )(tw , and the generalized acceleration )(tw  as functions of time t . 

Figures 5, 6, and 7 show the graphs of the generalized angle coordinate )(t , the 
generalized angle velocity )(t , and the generalized angle acceleration )(t  as functions of 
time t . 

Figures 8, 9, and 10 show the graphs of the velocity )(tv x  along the axis Ox , the 

velocity )(tv y  along the axis Oy , and finally, the full velocity )(tv  as functions of time t . 

Figures 11, 12, and 13 show the graphs of the acceleration )(ta x  along the axis Ox , 

the acceleration )(ta y  along the axis Oy , and finally, the full acceleration )(ta  as functions 

of time t . 
The laws )(tw , )(tw  and )(tw  are periodic indeterminate functions of time. The most 

important obtained values are: mtwm 1176.0)(0054.0  , smw /4688.0max  , and 
2/2904.8max smw  . 

The maximum angular velocity is 16909.1max  s . The range of variation of the 

angular acceleration is  22 8872.5)(8622.5   sts  . 

 

Fig.14 Phase trajectory  )(www   . 

 

Fig.15 Phase trajectory  )(  . 

 

Fig.16 Inner force of the rod 
][)( NtSS  . 
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The laws of velocity, )(tv x , )(tv y  and )(tv , are periodic functions with the following 

maximum values: smv x /3818.3max  , smv y /5845.1max   and 

smtvsm /3822.3)(/0750.0  . 

The laws of acceleration, )(ta x , )(ta y  and )(ta , are periodic functions that vary in 

the following ranges: 22 /7721.8/7331.8 smasm x  , 
22 /4692.9/0102.9 smasm y   and 22 /5828.9/3104.3 smasm  . 

The inner force )(tS  of the rod has always a positive value, or in other words, the rod 
is always loaded with tensile force. 

This force is in the range NtSN 589.386)(7609.24  . 

The dynamical coefficient for the rod is  97.1dynk . 

 
CONCLUSION 
It could definitely be said that the conducted research enriches the knowledge in the 

field of nonlinear Mechanics. It also shows the rich capabilities of the MatLab package for 
numerical integration of highly nonlinear systems of ordinary differential equations. The 
obtained numerical results are within real and acceptable limits. This proves that the dynamic 
model is adequate and the entered input parameters, as well as the initial conditions, are 
correctly chosen. The study opens the possibility for continuation by building a real model on 
which some experimental measurements can be made to compare the numerical results. 
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Резюме: Изследват се трептенията на махало, окачено на еластична греда. 

Математичното махало представлява материална точка окачена на идеално корав 
безмасов прът. Горният край на пръта е свързана чрез става за проста греда на две 
опори. Гредата се приема за идеално еластична и безмасова. Системата има две 
степени на свобода. Нелинейността е само от геометричен характер. Изведена е 
нелинейна система от две диференциални уравнения. Извършено е числено решение с 
математическия пакет MatLab. Получени са законите на движение, обобщените 
скорости, обобщените ускорения и фазовите траектории. Определена е вътрешната 
сила в пръта като функция на времето. Изчислен е коефициента на динамичност за 
пръта. С оглед на продължаване на задачата чрез изготвяне на действителен модел и 
провеждане на експериментални изследвания, са определени проекциите на скоростта 
и ускорението на материалната точка по хоризонталата и вертикалата, както и 
техните големини. Получените резултати са изобразени графично и подробно 
анализирани. Изследването има теоретичен и приложен характер. 




