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Abstract: The oscillations of a pendulum suspended on an elastic beam are examined.
The mathematical pendulum is a material point suspended on an ideal rigid and massless rod.
The upper end of the rod is connected by a joint with an elastic beam on two supports. The
beam is considered to be perfectly elastic and massless. The system has two degrees of
freedom. The nonlinearity is due only to a geometric nature. A nonlinear system of two
differential equations is derived. A numerical solution was made with the mathematical
package MatLab. The laws of motion, generalized velocities, generalized accelerations, and
phase trajectories are obtained. The internal force in the rod as a time function is also
determined. The dynamical coefficient for the rod is calculated. In order to continue the task
by preparing an actual model and conducting experimental research, the projections of the
velocity and acceleration of the material point along the horizontal and vertical axes, as well
as their magnitudes, are determined. The obtained results are presented graphically and
analyzed in detail. The research has a theoretical and applied character.

INTRODUCTION

The pendulum has been the subject of researches from ancient times. During the
Renaissance, the phenomenal periodic movements of the pendulum were studied by Leonardo
da Vinci and Galileo Galilei, [1].

In 1656, the Dutch scientist Christiaan Huygens constructed a pendulum clock. Such
clocks remained the most accurate instruments for measuring time until the 1930 year, [2].

In 1851, Jean-Bernard Leon Foucault constructed a mathematical pendulum to prove
the rotation of the Earth around the North-South axis, [3].

Analytical solutions related to the study of small and large oscillations of the
pendulum provide a field for the development of a number of branches of Mathematics. To
this day, many scientists, when studying the large nonlinear oscillations of the pendulum,
apply analytical solutions, [4, 5, 6].

The pendulum usually has a fixed center. In publication [7] the pendulum is wrapped
around a stationary cylinder. In this case, the length of the cord changes, and the mathematical
pendulum has a momentary center of rotation.

The dynamical behavior of rigid weightless rod and concentrated mass, sliding
periodically along the axis of the rod is studied in the article [8].
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The dynamical behavior of rigid weightless rod and concentrated mass, moving
simultaneously along and across the axis of the rod, according to given periodical laws is
studied in the article [9].

In the present work, the rotational center of the mathematical pendulum is not fixed. It
is connected by a joint for an ideal elastic beam.

The main goals of this study are the following:

1. To obtain the differential equations that describe the big oscillations of the
pendulum and the beam taking into account the geometric nonlinearity of the model.

2. To compile a program for numerical integration of the derived nonlinear system of
differential equations in the area of the mathematical package MatLab, and after then, to
perform a computer simulation.

3. The study should be a basis for continuing the task by preparing a real pendulum
and conducting experimental researches.

DYNAMICAL MODEL

The dynamic model of the mathematical pendulum is shown in Figs. 1. It consists of a
material point M with a mass m and a perfectly rigid and weightless rod MN , which has a
length L. The rod is connected to the simple beam 4B by a joint N . The beam has the
length [ and stiffness of bending E.7, where E is the modulus of elasticity (modulus of
Young), and / is the moment of inertia of the cross-section of the beam. The joint N is
located in the middle of the beam.

Fig. 1 Dynamical model of the system.

The system has two degrees of freedom. The angle ¢(¢) and the vertical displacement
w(t) of the joint N are taken as independent generalized coordinates, (Fig. 1).

In the position of stable equilibrium and rest, the joint N coincides with the initial
point O that is considered the center of the fixed coordinate system Oxy. In the same

position, the rod MN is vertical.
DIFFERENTIAL EQUATIONS

The mechanical system is conservative. Its research is carried out with the Lagrange
equations of the second kind:
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The kinetic energy of the pendulum is determined by the formula:
3) E, =%.m.((’p.L—v‘v.sin(p)2 +%.m.w2.cosch .

The full potential energy has the form:

(4) Ep:Co—m.g.w+m.g.L.(l—COS(p)+%.c.w2,

where C, = const is the potential energy of the system in a stable equilibrium position, and ¢

Is the quasi-elastic coefficient for the beam determined for point N .

This coefficient is calculated by the formula:
(5) ¢ =48, f !

Formulas (3) and (4) are put in equations (1) and (2), and then the following system of
differential equations is reached as follows:

(6) W — L.sing.¢p — L.COSQG.¢° + —.w—g=0,
m

(7) sinpg.w—L.¢p—g.sinp=0 .

This nonlinear system of two ordinary second-order differential equations, under
appropriate initial conditions, is performed numerically with a specially prepared program in
the area of the mathematical package MatLab.

For future experimental measurements of the velocity and the acceleration of point
M , some formulas for the algebraic projections of absolute velocity and absolute acceleration
relative to the axes of the fixed coordinate system O x y are needed, [10-12].

These expressions are the following:

(8) v, =.L.COSQ,

9) v,=¢.Lsing—w,

(10) a,=¢.L.cose—@°.Lsing ,
(11) a,=¢.L.sing+d*.L.COSQ— 1 .

The magnitudes of the velocity and acceleration of point A are as follows:

(12) v=vi+v? o,

(13) a=.,a’+a’ .
The inner force of the rod is determined by the formula:
(14) S=m.((g—-w).cose+¢p>L).

The advantages of the numerical solution consist in the possibility to vary with the
values of the parameters in order to obtain the desired final results.
The numerical solution also allows optimization of some parameters, [13].
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NUMERICAL SOLUTION

The numerical integration is carried out using the following numerical parameters:

E=2x10" Pa: 1 =1.125x10"8 m*: L =2 m: m=20kg;[=3.20m.

w(t)[m]

dw(t/et [m/s)

d2witydt2 [mis2)

The initial conditions are: w, =0.05m, ¢, =n/4rad, w,=0mls, ¢,=0radls.

The calculations are performed using an integration time, 1 =10 s .

Law of motion wi{t)
T T T

Time in [s]

Fig.2 Generalized coordinate
w=w(t) [m].

Law of velocity duft)/dt
T T T

=)

=
=,

=
n

=
w

=
=

=
n

Time in [s]

Fig.3 Generalized velocity
w=w(t) [mls].

Law of acceleration uft)
T T T

Time in [s]

Fig.4 Generalized acceleration
w=w(t) [mls?].
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Law of motion fi(t)
T T

Time in [s]

Fig.5 Generalized coordinate
¢ =0() [rad].

Law of angle velocity dfi(t)/dt
T T T T T

Time in [s]

Fig.6 Generalized angle velocity

d2fiftydt2 [1/s2)

¢=0(t) [radls].

Law of acceleration fi(t)
T T T

Time in [s]

Fig.7 Generalized angle acceleration

¢=¢(t) [radls?].



Absolute velocity Vx Absolute acceleration ax
T T T

ax [m/s2]

0 1 2 ."3 4T 5 . 6 7 8 9 10 1 2 3 d'ﬁme?n[s] 6 7 8 9 10
Fig.8 Velocity along the axis Ox Fig.11 Acceleration along the axis Ox
v.=v (t) [mls]. a,=a,(t) [mls?].

Absolute velocity Vy
T T T

Absolute acceleration ay
T T

ay [m/s2]

Time in [s] Time in [s]
Fig.9 Velocity along the axis Oy Fig.12 Acceleration along the axis Oy
v, =v (t) [mls]. a,=a,(t) [mls?].

Absolute full acceleration

Absolute full velocity
T T T

Time in [s]

Time in [s]

Fig.10 Full velocity Fig.13 Full acceleration

v=(vx2+vy2)0'5 [mls]. a:(ax2+ay2)0'5 [mls?].

The fourth-order Runge-Kutta method with a fixed step at relative accuracy 10~ ° and
absolute accuracy 10~ ° was used.

Figures 2, 3, and 4 show the graphs of the generalized coordinate w(z), the
generalized velocity w(z), and the generalized acceleration w(z) as functions of time ¢.
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Phase trajectory wit)
T

Phase trajectory fi(t)
T T T
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wit)/dt [1/s]
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Fig.14 Phase trajectory w = w(w). Fig.15 Phase trajectory ¢ = ¢ ().

Inner Force in the Cord
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Fig.16 Inner force of the rod
S=85(@) [N].

Figures 2, 3 and 4 show the graphs of the generalized coordinate w(¢), the generalized
velocity w(z), and the generalized acceleration w(z) as functions of time ¢.

Figures 5, 6, and 7 show the graphs of the generalized angle coordinate ¢(z), the
generalized angle velocity ¢(¢), and the generalized angle acceleration ¢(z) as functions of

time ¢.
Figures 8, 9, and 10 show the graphs of the velocity v _(¢) along the axis Ox, the

velocity v (¢) along the axis Oy, and finally, the full velocity v(¢) as functions of time ¢.
Figures 11, 12, and 13 show the graphs of the acceleration a (¢) along the axis Ox,
the acceleration «a , (¢) along the axis Oy, and finally, the full acceleration a(¢) as functions

of time ¢.
The laws w(z), w(z) and w(¢) are periodic indeterminate functions of time. The most

important obtained values are: 0.0054m < w(r) <0.1176 m , max|w|=0.4688 m/s, and
max || =8.2904 m/s?.

The maximum angular velocity is max|('p| =1.6909 s ~'. The range of variation of the
angular acceleration is —5.8622 s ° < {(f) <5.8872s * .
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The laws of velocity, v (¢), v () and v(¢), are periodic functions with the following

maximum values: max‘vx ‘ =3.3818 m/s, max‘vy ‘ =1.5845m/s and

0.0750 m/s <v(t) <3.3822 mls .
The laws of acceleration, a (¢), a,(¢) and a(¢), are periodic functions that vary in

the following ranges: —8.7331m/s* <a_ <8.7721mls?,
-9.0102 m/s? < a, <9.4692 mls? and 3.3104 m/s? <a<9.5828 m/s?.

The inner force S (¢) of the rod has always a positive value, or in other words, the rod

is always loaded with tensile force.
This force is in the range 24.7609N < S(¢) < 386.589 N .

The dynamical coefficient for therodis £, =1.97.

dyn

CONCLUSION

It could definitely be said that the conducted research enriches the knowledge in the
field of nonlinear Mechanics. It also shows the rich capabilities of the MatLab package for
numerical integration of highly nonlinear systems of ordinary differential equations. The
obtained numerical results are within real and acceptable limits. This proves that the dynamic
model is adequate and the entered input parameters, as well as the initial conditions, are
correctly chosen. The study opens the possibility for continuation by building a real model on
which some experimental measurements can be made to compare the numerical results.
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MAXAJIO OKAYEHO HA EJIACTUYHA I'PEJIA

AHnacrac UBanoB UBanoB
aii2010@abv.bg

Bucwe Tpaucnopmno Yuunuwe ,, Tooop Kabonewkos”
1574 Cogpusa, yn.”’I'eo Munes” 158,
PEIIYB/IUKA BBJITAPUA

Knrouoeu oymu: maxano, enacmuuna epeoa, 2eoMempudHa HeJUHeuHoCm, HeluHelHu
mpenmeHus, cumyaayus, MatLab

Pe3rome: Hzcneosam ce mpenmeHusma Ha Maxdaio, OKA4eHO HA elacmuyHa 2peod.
Mamemamuunomo maxano npedcmasniga Mamepualna moyka OKAYeHd HA UOedalHo KOpas
besmacos npvm. I'opruam Kpaii Ha npvma e c8bpP3aHa ype3 cmasa 3a Npocma 2peda Ha 0ee
onopu. I'peoama ce npuema 3a udeanHo enacmuyna u Oesmacosa. Cucmemama uma 0ee
cmenenu Ha c806o0a. Henunetinocmma e camo om ceomempuuen xapaxmep. Hzeedena e
HeluHelHa cucmema om 0ge oughepenyuainu ypaenenus. Hzevpuieno e yucieno peuienue ¢
mamemamuyeckusi nakem MatLab. Ilonyuenu ca 3axonume Ha O8udcenue, 0000WeHUmMe
ckopocmu, 0bodbwenume yckopenus u ¢pazosume mpaekmopuu. Onpeoenena e ebmpewHama
cuna 8 npvma kamo QyHKyus Ha eépememo. HM3uucnen e xoegpuyuenma Ha OUHAMUYHOCH 34
npvma. C oened Ha NpoowbINHCABAHE HA 3a0aYama ype3 u3eomesne Ha OelicmeumeneH Mooen u
npogedcoane Ha eKCnepuUMeHmMaiHu u3Ccie08ans, ca onpeoeieHy npoeKyuume Ha cKkopocmma
U YCKOpEeHUemo Ha MAamepuaiHama moykda no XOpU3OHmMAaiama u 6epmukailama, KaKkmo u
mexHume 2onemunu. Illonyyenume pe3ynimamu ca uzobpazenu epaguuyHo u NnoopooOHO
ananuzupanu. Mscreosanemo uma meopemuier u NPUIONCeH Xapakmep.
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