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Abstract: In this paper, the dynamic behavior of a 3D autonomous dissipative
nonlinear system of Hopf-Langford type is investigated qualitatively and numerically. It is
shown that the 3D nonlinear system can be separated of two coupled subsystems in the master
(drive)-slave (response) synchronization type if the system’s energy is included. Based on the
computing first Lyapunov value for master system, we have attempted to give a general
framework (from bifurcation theory point of view) for understanding the structural stability
and bifurcation behavior of original system. The effect of synchronization on the dynamic
behavior of original system is also studied by numerical simulations.

1. INTRODUCTION

Chaotic behavior has been observed in systems of different nature as this motion is
based on homoclinic (heteroclinic) structures which instability accompanied by local
divergence and global contraction [1-3]. It is well-known that autonomous nonlinear
differential system of the form

where n>3, A is the vector of parameters and f: R" — R" is a smooth vector function (i.e.

continuously differentiable) in some domain Q, can display a rich diversity of periodic,
multiple periodic, chaotic and hyperchaotic flows dependent upon the specific values of one
or more bifurcation (control) parameters [4, 5].

The investigation of dynamical processes in coupled nonlinear systems is an
interesting problem from both theoretical (mathematical) and applied (engineering) points of
view. Phenomena such as stability in interacting subsystems can be observed in nature and
science. Usually, that phenomena is called synchronization [6, 7]. There are known four basic
types of synchronization: complete, generalized, phase and lag synchronization [8]. Phase
synchronization is the phenomenon of the onset of balance between the phases of the
subsystems state variables oscillations, which is caused by an onset of the energy balance.

A principal problem toward complete understanding of nonlinear interactions is to
identify where in its phase space one dynamical system is structurally stable. For example, in
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a small neighborhood of a structurally stable Poincare homoclinic orbit lie only periodic
orbits from saddle type. On the contrary, near a structurally unstable homoclinic orbit may
exist both structurally unstable and attractive periodic orbits in addition to saddle ones [9].
Note that after Smale’s works [10, 11] these systems are said to be Morse-Smale systems.

The structural stability (roughness) investigation of steady state and of limit cycles or
other types of trajectories is a main problem in bifurcation theory. It is well-known that there
is critical dependence of the stability conditions of limit cycles on the stability conditions of
its steady states. Based on classical works [12-14], it was defined that by knowing the sign of
Lyapunov values (called also focus values, Lyapunov quantities (coefficients)) we can
efficiently studied the structure of complicated nonlinear system trajectories. In other words,
the type of: 1) stability loss of equilibrium and 2) winding/unwinding of system trajectories in
small neighborhoods of equilibrium depend on the sign of Lyapunov value [15, 16].

In this paper, we focus our study on the following system

X = (,U - a)xl — X, + x5 + lxl(l— x; )’
(1) X, = e+ (u—a)x, + x,x, + Ix, (1— x5 ),
X3 = X _7(x12 +x22 +x§)’

where u,a, B,y and [ are the positive system parameters. The infinite form from ordinary
differential equations of system (1) was originally introduced by Hopf [17] in order to
describe a fluid turbulence dynamics. Later, firstly in a private communication and after that
in a paper [18], Langford constructed (1) for ¢=f=y=1 and [=0. In our next
considerations, when a #1, f#1,y=1 and [ =0, we will called system (1) — generalized
Hopf-Langford system (GHL). After the works of Hassard et al. [19] and Nikolov et al. [20],
even today, the GHL system represents an attractive example for both theoretical and
numerical investigations [21-23].

Here we investigate the previously unexplored parameter regions of the generalized
Hopf-Langford system (GHL). A new qualitative picture of behavior near bifurcation points
can be obtained if the GHL system (1) has the following modified form

X = (,u - a)xl - P, + x,x; + lxl(l— x5 ),

X, = e+ (1 —a)x, + x,x, + lxz(l— X ),

(2) .
Xy = poxy = 2,

E=2u+l-a)E—(—a)?—-22E—x3+Ix;,

1 . . . ..
where E:E(xf+x22+x32) is the energy. Moreover, we investigate qualitatively and

numerically the structural stability of (2) (which is equivalent of the original system (1)) as
for this goal a specific version of bifurcation theory, based on the computing of Lyapunov
values (not exponents), was used.

The fixed (steady state) points (FPs)of the system (2) are found by equating the right-
hand sides of (2) to zero. Thus, we obtain that equilibrium points of the system are

B Oux=x,=x,=E=0, first FP,

second, third and fourth FPs.
152 —(pd +1)x2 + (o — 1%, + (e +1— ) =0.
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Here we note that the polynomial function for X in (4) has three different real roots if

kY (K,
5 =| 2| +|=2| <0,
© o-[5] (%)
2 3 _
where Klz_ﬂ—l'mz’KZ:Z(ﬁ) _M+m37 nﬁz_ﬂl+11m2:a ! and
3 3 3 l [
my :M. While dealing with modified system (2), the main simplification is that it

can be separated of two coupled subsystems in the master (drive) — slave (response)
synchronization type. As we can see, the master system has the form

(6) Xy = poxy = 2E,
E=2u+l-a)E—(—a)y?—2L2E—x2 +Ix;.

Since the corresponding dynamic behavior of the original system (2) principally dependence
from the behavior of the master system [24], below we investigate only the bifurcation
dynamic of this system. It is seen that master system describes the evolution in time of
variable x, and energy E .

The plan of the paper is as follows: in Section 2 we present analytical and numerical
results concerning the system (6). In Section 3 we summarize our results.

2. QUALITATIVE AND NUMERICAL ANALYSIS

In this section we consider system (6) which present an autonomous nonlinear
dynamical model. According to the general theory of ordinary differential equations [25], the
equilibrium (steady state) values of the system (6) are as those into (3) and (4), the part for x,
and E. In order to determine the character of these fixed points, we make the following
substitutions into (6)

(7) x,=x,+x, E=E+y.

Hence, after accomplishing some transformations, the system (6) (in local coordinates) can be
written in the form

©) . : S
V=cx+0,y+ex e xy+e X —ex’y+Ixt,

where

9) 61:)73[419732 _3’?3_415_2(1_“)]7 €2 :2(y+l—a—l)_c32);

¢y =(6132 —3%,—21E I +a),c, =4l%,, cs =4l %, ~1, c; = 2.

The stability of fixed points (3) and (4) is defined by the following Routh-Hurwitz
conditions

(10) R=p=—(u+c,)=-3u+2(%2+a-1)>0,
(11) g = e, +2¢, = 2ulp+1-a—132)+ %,[4132 - 3+ 20u)%, - 2(1- )|} > 0.

VII-3



The notations p,q and R in (10) and (11) are taken from [14]. It is seen that first fixed point
O, (eq. (3)) is always stable if
a<u+l,
12 :
(12) 0 21; 3u

When the condition (10) is not valid, the steady states (3) and (4) become unstable, as in this
case according to [14] “soft” (reversible) or “hard” (un-reversible) stability loss takes place.
In order to define the type of stability loss of steady states (3) and (4) it is necessary to
calculate the so-called first Lyapunov value (Ll(zo)) on the boundary of stability R=0. In

case of two first order differential equations, this value can by determined analytically by the
formula in [14]. For the system (8) we have

(13) Ay =gy = Ayy = Ay = Ay = a1y =byy =byy=b,, =0,a=u,

b=-2,c=c,d=c,,byy=c3,b,=—c,,byy=c5, by =—¢4.

Thus, in our case we obtain for L(4,):

(14) L(2,)=—"=[16x> - 23+ 4ul)%> + u*].

Zq\/_

2
It is seen that: i) for /=0 then L, =0; (ii) for /=0 and x, =0 then L, = i

2q\q
for /0, x, # 0 then L, can be positive, negative or equal to zero.

In order to simplify our numerical analysis, some of the parameters are kept constant.
The parameter values are: =1 and S =0.9. The first Lyapunov value obtained for the

system (6) as a function of bifurcation parameters x <[0.53,0.533] and /<[0.208, 0.24] is
plotted in Figure 1. It is seen that for smaller values of 4 and /, L, has negative values, i.e.
soft stability loss take place.

>0 and iii)

0.22

021

L -200 02 |

Figure 1. First Lyapunov value L, as function of parameters x and /, when o =1.

In Figures 2 and 3, we numerically demonstrate that when master system (6) is stable
(i.e. the energy E of system is a constant) or has a stable limit cycle then slave system has
periodic solutions with period one, or quasi-periodic solutions (oscillations) with period
different from one.
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3. CONCLUSION
The nonlinear behavior (effect of synchronization) of a dissipative system of Hopf-
Langford type has been investigated qualitatively and numerically. It has been shown that, if
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Figure 2. Periodic solutions for slave system, when energy E is constant.
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Figure 3. Quasi-periodic solutions of slave system, when energy E oscillate.

master system (energy) is constant then the slave system has periodic solutions. On the other
hand, if the energy oscillate then the slave system has quasi-periodic behavior. Our results for
first Lyapunov value Ll(/io) presented in section 2 suggest that system (2) is structurally

stable for some intervals of its parameters, and therefore soft stability loss takes place.
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E®EKT HA CUHXPOHU3ALUATA BbPXY EJTHA CUCTEMA
OT HOPF-LANGFORD THII

Cgerocaas I'. Hukouios!?
S.Nikolov@imbm.bas.bg

!Bucwe mpancnopmno yuunuwe ,, T. Kaonewxoe”, yn. I. Muneg Ne 158, 1574 Cogpua,
Hucmumym no mexanuxa-bvnzapcka Axademus na Haykume,
ya. Axao. I'. bonues, 6. 4, 1113 Coghus,
PEIIYB/IUKA B'bJITAPUA

Knrwuoseu oymu: ananus, cunxponusayus, HeluHelHa ouHamuka, cucmema Ha Hopf-
Langford

Pestome: B masu cmamus e u3Cie08aHO KAYECMBEHO U HUCIEHO OUHAMUYHOMO
nosedenue Ha eona 3D asemonomna OucunamusHa HeauneuHa cucmema om Xong-
Jlanegpopoos mun. Iloxazano e, ue 3D Henunelunama opucUHAIHA cUcmema Modce 0a Ovoe
pasoenena Ha noOcUcmemMy Om CUHXPOHUZAYUOHEH 8UO 800euja-noOOYUHEHd, aKo ce GKIIoYU
enepeusama Ha cucmemama. Ha 6azama na npecmamanemo na nvpsama Jlanynoea senuuuna
3a eodewama cucmema, npasum onum o0a oadem obwa pamka (om 2iedHa MoyKa Hd
ougypkayuonnama meopus) 3a pazoupaHemo Ha CMPYKMYPHAMA YCMOUYUBOCH U
ougyprayuonno nogeoenue Ha opucunaiHama cucmema. Covujo maka e uscie08an eghekmvm
H4 CUHXDOHU3UPAHE 6bpXy OUHAMUKAMA HA OPUSUHATHAMA CUCTIeMd Ype3 HUCLeHU
cumynayuu.
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