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 Abstract: In this paper, the dynamic behavior of a 3D autonomous dissipative 
nonlinear system of Hopf-Langford type is investigated qualitatively and numerically. It is 
shown that the 3D nonlinear system can be separated of two coupled subsystems in the master 
(drive)-slave (response) synchronization type if the system’s energy is included. Based on the 
computing first Lyapunov value for master system, we have attempted to give a general 
framework (from bifurcation theory point of view) for understanding the structural stability 
and bifurcation behavior of original system. The effect of synchronization on the dynamic 
behavior of original system is also studied by numerical simulations. 
 
1. INTRODUCTION 
 Chaotic behavior has been observed in systems of different nature as this motion is 
based on homoclinic (heteroclinic) structures which instability accompanied by local 
divergence and global contraction [1-3]. It is well-known that autonomous nonlinear 
differential system of the form 

       ,,, nRxxf
dt

dx
x    

 

where 3n ,   is the vector of parameters and nn RRf :  is a smooth vector function (i.e. 
continuously differentiable) in some domain  , can display a rich diversity of periodic, 
multiple periodic, chaotic and hyperchaotic flows dependent upon the specific values of one 
or more bifurcation (control) parameters [4, 5]. 
 The investigation of dynamical processes in coupled nonlinear systems is an 
interesting problem from both theoretical (mathematical) and applied (engineering) points of 
view. Phenomena such as stability in interacting subsystems can be observed in nature and 
science. Usually, that phenomena is called synchronization [6, 7]. There are known four basic 
types of synchronization: complete, generalized, phase and lag synchronization [8]. Phase 
synchronization is the phenomenon of the onset of balance between the phases of the 
subsystems state variables oscillations, which is caused by an onset of the energy balance. 
 A principal problem toward complete understanding of nonlinear interactions is to 
identify where in its phase space one dynamical system is structurally stable. For example, in 
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a small neighborhood of a structurally stable Poincare homoclinic orbit lie only periodic 
orbits from saddle type. On the contrary, near a structurally unstable homoclinic orbit may 
exist both structurally unstable and attractive periodic orbits in addition to saddle ones [9]. 
Note that after Smale’s works [10, 11] these systems are said to be Morse-Smale systems. 
 The structural stability (roughness) investigation of steady state and of limit cycles or 
other types of trajectories is a main problem in bifurcation theory. It is well-known that there 
is critical dependence of the stability conditions of limit cycles on the stability conditions of 
its steady states. Based on classical works [12-14], it was defined that by knowing the sign of 
Lyapunov values (called also focus values, Lyapunov quantities (coefficients)) we can 
efficiently studied the structure of complicated nonlinear system trajectories. In other words, 
the type of: 1) stability loss of equilibrium and 2) winding/unwinding of system trajectories in 
small neighborhoods of equilibrium depend on the sign of Lyapunov value [15, 16]. 
 In this paper, we focus our study on the following system 
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where  ,,,  and l  are the positive system parameters. The infinite form from ordinary 
differential equations of system (1) was originally introduced by Hopf [17] in order to 
describe a fluid turbulence dynamics. Later, firstly in a private communication and after that 
in a paper [18], Langford constructed (1) for 1   and 0l . In our next 
considerations, when 1,1,1    and 0l , we will called system (1) – generalized 
Hopf-Langford system (GHL). After the works of Hassard et al. [19] and Nikolov et al. [20], 
even today, the GHL system represents an attractive example for both theoretical and 
numerical investigations [21-23]. 
 Here we investigate the previously unexplored parameter regions of the generalized 
Hopf-Langford system (GHL). A new qualitative picture of behavior near bifurcation points 
can be obtained if the GHL system (1) has the following modified form 
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where  2

3

2

2

2

12

1
xxxE   is the energy. Moreover, we investigate qualitatively and 

numerically the structural stability of (2) (which is equivalent of the original system (1)) as 
for this goal a specific version of bifurcation theory, based on the computing of Lyapunov 
values (not exponents), was used. 
 The fixed (steady state) points (FPs)of the system (2) are found by equating the right-
hand sides of (2) to zero. Thus, we obtain that equilibrium points of the system are 
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Here we note that the polynomial function for 3x  in (4) has three different real roots if  

(5)    ,0
23

2

2

3

1 














KK
Q  

 

where 3
21

3

1
22

2

1
1 33

2,
3

m
mmm

Km
m

K 





 , 

l

l
m

l

l
m








21 ,

1
 and 

 
l

l
m

 
3 . While dealing with modified system (2), the main simplification is that it 

can be separated of two coupled subsystems in the master (drive) – slave (response) 
synchronization type. As we can see, the master system has the form 
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Since the corresponding dynamic behavior of the original system (2) principally dependence 
from the behavior of the master system [24], below we investigate only the bifurcation 
dynamic of this system. It is seen that master system describes the evolution in time of 
variable 3x  and energy E . 

 The plan of the paper is as follows: in Section 2 we present analytical and numerical 
results concerning the system (6). In Section 3 we summarize our results. 
 
2. QUALITATIVE AND NUMERICAL ANALYSIS 
 In this section we consider system (6) which present an autonomous nonlinear 
dynamical model. According to the general theory of ordinary differential equations [25], the 
equilibrium (steady state) values of the system (6) are as those into (3) and (4), the part for 3x  

and E . In order to determine the character of these fixed points, we make the following 
substitutions into (6) 
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Hence, after accomplishing some transformations, the system (6) (in local coordinates) can be 
written in the form 
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 The stability of fixed points (3) and (4) is defined by the following Routh-Hurwitz 
conditions 
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The notations qp,  and R  in (10) and (11) are taken from [14]. It is seen that first fixed point 

1O (eq. (3)) is always stable if 
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When the condition (10) is not valid, the steady states (3) and (4) become unstable, as in this 
case according to [14] “soft” (reversible) or “hard” (un-reversible) stability loss takes place. 
In order to define the type of stability loss of steady states (3) and (4) it is necessary to 
calculate the so-called first Lyapunov value (  01 L ) on the boundary of stability 0R . In 

case of two first order differential equations, this value can by determined analytically by the 
formula in [14]. For the system (8) we have 
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Thus, in our case we obtain for  01 L : 
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for 0,0 3  xl  then 1L  can be positive, negative or equal to zero.  

 In order to simplify our numerical analysis, some of the parameters are kept constant. 
The parameter values are: 1  and 9.0 . The first Lyapunov value obtained for the 

system (6) as a function of bifurcation parameters  533.0,53.0  and  24.0,208.0l  is 

plotted in Figure 1. It is seen that for smaller values of   and l , 1L  has negative values, i.e. 
soft stability loss take place. 

 
Figure 1. First Lyapunov value 1L  as function of parameters   and l , when 1 . 

 
 In Figures 2 and 3, we numerically demonstrate that when master system (6) is stable 
(i.e. the energy E of system is a constant) or has a stable limit cycle then slave system has 
periodic solutions with period one, or quasi-periodic solutions (oscillations) with period 
different from one. 
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3. CONCLUSION 
 The nonlinear behavior (effect of synchronization) of a dissipative system of Hopf-
Langford type has been investigated qualitatively and numerically. It has been shown that, if 
 

        
Figure 2. Periodic solutions for slave system, when energy E is constant. 

        
Figure 3. Quasi-periodic solutions of slave system, when energy E oscillate. 

 
master system (energy) is constant then the slave system has periodic solutions. On the other 
hand, if the energy oscillate then the slave system has quasi-periodic behavior. Our results for 
first Lyapunov value  01 L  presented in section 2 suggest that system (2) is structurally 

stable for some intervals of its parameters, and therefore soft stability loss takes place. 
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 Ключови думи: анализ, синхронизация, нелинейна динамика, система на Hopf-
Langford 
 Резюме: В тази статия е изследвано качествено и числено динамичното 
поведение на една 3D автономна дисипативна нелинейна система от Хопф-
Лангфордов тип. Показано е, че 3D нелинейната оригинална система може да бъде 
разделена на подсистеми от синхронизационен вид водеща-подчинена, ако се включи 
енергията на системата. На базата на пресмятането на първата Ляпунова величина 
за водещата система, правим опит да дадем обща рамка (от гледна точка на 
бифуркационната теория) за разбирането на структурната устойчивост и 
бифуркационно поведение на оригиналната система. Също така е изследван ефектът 
на синхронизиране върху динамиката на оригиналната система чрез числени 
симулации. 




