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Abstract. Path planning algorithms for mobile robots are analyzed from the point of
view of the possibility of their use for autonomous systems. Particular attention is paid to the
analysis of the classical approaches possibility for the implementation of autonomous path
replanning based on sensory data in the incompleteness and fuzziness of information
conditions. Among the algorithms of the classical approach, the most adaptive ones turned
out to be those that use artificial potential fields and the Monte Carlo method (sampling-
based). It is shown that most algorithms, including those based on the approach of
computational intelligence, provide replanning only on the basis of constant updating of
global information about the environment. It was revealed that the hybrid approach to solving
the path planning problem is the most adaptive, combining the techniques of global and local
planning. The methods of this approach combine classical planning models with models
based on computational intelligence. In addition, it is shown that the question of the
homogeneity of the integration of solutions to various navigation tasks and the mutual
influence of errors arising at each of the stages remains unexplored.

INTRODUCTION

Robotics is an integral branch of knowledge encompassing mechanics, electrical and
computer engineering, computer science, decision theory, artificial intelligence, etc. The listed
areas serve as a theoretical basis for various stages of design and creation of robots. The first
four areas provide the development and integration of hardware components of robotic
systems. In turn, the theory of decision making, and artificial intelligence is the basis for the
construction of high-level control algorithms, including intellectual and cognitive ones.

The classical goal of mobile robotics at the cognitive level is to solve the navigation
problem, which is to provide the robot with the ability to navigate the terrain, accurately plan
and pass paths, create a map of the environment and localize objects on it, patrol territories,
etc.

The most important and researched task of the above is path planning. There are
methods for solving it based on different approaches. Several reviews [1-3] are devoted to
these methods, in which their advantages and limitations were investigated. The performed
analyzes show the efficiency of path planning algorithms for robots in dynamic and partially
unknown environments, with different kinematic schemes, etc. However, the questions posed
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by the requirements for the functioning of a mobile robot in autonomous mode remain
unsolved [4, 5]. The incompleteness and fuzziness of information about the environment lead
to the use of knowledge about the path in motion control and to replan the path based on the
situation that is formed on data from the sensors. Therefore, for autonomous robots, it is
important that the tasks of path planning, robot localization, and situational replanning are
integrated into a single system with a single model for representing knowledge about the path,
motion control commands, and the situation in the environment. The purpose of this review is
to identify approaches and models for the path planning of robots that meet the integration
requirements for the criterion of homogeneity of knowledge representation and data
processing methods based on this knowledge.

THE PROBLEM OF AUTONOMOUS ROBOT NAVIGATION

An autonomous robot can navigate with different initial knowledge of the
environment. The following situations can be distinguished: 1) the environment is known and
does not change during the movement (known static environment); 2) the environment is
known, but it can undergo changes — obstacles on the path of movement may accidentally
arise (known dynamic environment); 3) the environment is unknown and invariable
(unknown static environment); 4) the environment is unknown and can change (unknown
dynamic environment).

In [6] the navigation process of a single mobile robot is presented and described in the
form of a cycle consisting of a sequence of the following tasks: perception of information
about the environment, localization, and mapping of the environment, path planning, and
motion control.

Perception of information about the environment is a task that consists of reading,
processing, generalizing, and interpreting data received from the robot's sensor systems.

Localization and mapping of the environment are two interrelated tasks that ensure the
binding of objects to the map of the environment (known in advance or built independently).
The most important case of localization is self-localization — the determination by the robot its
own position in the environment. The role of localization and mapping in the navigation cycle
can be different, depending on the amount of initial knowledge and the available sensory
information.

Path planning is the task of constructing the optimal path of the robot from the starting
to the goal point according to a certain criterion. Depending on the amount of initial
knowledge, global and local path planning are distinguished. Global path planning is possible
in situations with a known environment. The problem of local path planning is solved in cases
of unknown environments, using sensor data (sensor-based approach).

Motion control is the task of ensuring the passage of the path without deviations,
providing speed control in the direction of the movement of the robot. To solve the problem,
control systems with linear regulators (PID controller and its variants [7]), fuzzy controllers
[8-10], neural network controllers [11], and model predictive control [12] are used. Motion
control is of particular importance for nonholonomic systems [6].

CONFIGURATION SPACE

To solve the navigation problem, the concept of a workspace W is introduced, in
which a robot and obstacles exist. Points qe )}V occupied by obstacles form a set O.
Obviously, taking into account the shape, physical dimensions, and kinematic nature of the
robot, the set of points at which the robot can be located less than W/O. In order to
determine all points in space where the robot can be located without colliding with obstacles,
the concept of configuration space C is introduced [17]. The set of all points q e C at which
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the robot can be located without colliding obstacles is free space C the rest of the

free ?

configuration space C,, =C/C,., is the space occupied by obstacles.

free

If the purpose of navigation is to reach the goal point g, from the start point g,

then mathematically, the task is to find a sequence of intermediate points q € C, ., connecting

free

Qi With g, in such a way that for any pair of adjacent points from the sequence the

condition (q;,q.,,) € C,,, IS satisfied.

free

CLASSICAL PATH PLANNING METHODS

Methods of this class are divided into four groups [13]: 1) methods of construction of
roadmaps (RM, skeletonization); 2) methods of cell decomposition; 3) methods of artificial
potential fields (APF); 4) sampling-based methods.

Methods from the first two groups reduce the path planning problem to a graph search
problem. [14]. To solve the graph search problem, Dijkstra's algorithm, and its heuristic
improvements A *, D *, Focused D * D * Lite, etc. are used.

Roadmap methods are reduced to the formation of a RM graph G =(V,E) based on

the environment map and the solution of the search problem on the obtained graph [15]. This
group of methods includes visibility graphs [16] and VVoronoi diagrams [17].

Roadmaps based on visibility graphs. This method generates a RM G as follows: the
vertices of the graph are the start point g;,,, the goal point g, , and the vertices of obstacles

Ous - Vertices g; €V and g; eV are connected by an edge if (q;,q;) € Cy,.. The method

provides the construction of an optimal in length path between the start point and the goal
point, but it has significant drawbacks: firstly, the size of the graph grows too quickly with an
increase in the number of obstacles, which causes low performance in complex environments;
secondly, the resulting path passes too close to obstacles; thirdly, the method works with
polygonal obstacles [6, 18].

Roadmaps based on Voronoi diagrams. Unlike visibility graphs, the method based on
Voronoi diagrams forms the RM G in such a way as to maximize the distance to obstacles:
each point g of the resulting RM is equidistant from the nearest obstacles. This method leads

to an unjustified increase in the length of the route for open spaces and can be
computationally difficult for environments with complex obstacles [14].

There are methods that combine visibility graphs and Voronoi diagrams, for example
[19, 20].

Cell decomposition methods divide the map of the environment into a set of non-
intersecting cells, for each of which a characteristic point is selected. Based on the
characteristic points, a graph describing the environment is formed [15]. There are exact and
approximate cell decomposition [21].

Exact cell decomposition includes the following methods: trapezoidal decomposition
[22], boustrophedon decomposition [23], and Morse decomposition [24].

Trapezoidal decomposition. In this method, decomposition into cells is performed by
drawing parallel lines through the vertices of obstacles. These lines are the lateral boundaries
of the cells, the other boundaries are either the boundaries of the map or the sides of the
obstacles. The resulting cells are trapezoids (or triangles).

Boustrophedon decomposition. The method is a further development of trapezoidal
decomposition. In this method, only those vertical lines are selected as cell boundaries, which
can be extended on both sides of the vertex of the obstacle through which it is conducted, thus
reducing the total number of cells obtained.
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Morse decomposition is a generalization of decomposition by boustrophedon in case
of non-polygonal obstacles. The boundaries of cells are formed based on critical points
obtained using the Morse function.

Approximate cell decomposition includes grid-based decomposition [25, 26], quadtree
based decomposition [27] and probabilistic decomposition [28].

Grid-based decomposition. This method involves the imposition on the map of the
environment of a uniform square (triangular, hexagonal) grid. Each grid cell is assigned a
value that indicates the presence or absence of interference in the cell. The accuracy of grid-
based decomposition depends on the discreteness of the mesh. The disadvantage of this
method is the rapid growth of memory required to store grids with a high level of map detail.

Quadtree based decomposition is an iterative method, which is the development of a
grid-based decomposition: the map of the environment is divided into four equal rectangular
segments, then each segment containing the obstacle (or part of it) is again divided into four
equal subsegments and so on until all segments reach the minimum (predefined) size or will
not contain obstacles. This method can be used only in a known static environment.

Methods of artificial potential fields build based on the map of the environment a
function that describes the space with the help of a force field: the goal point has a low
potential, and obstacles have a high potential. The robot is modeled as a particle moves from a
point with high to a point with low potential [15]. The original method [29] has a significant
disadvantage, which is the presence in the artificial potential field of zones of local optimums
that prevent the robot from reaching the goal point. There are further developments in the
method of artificial potential fields that eliminate this shortcoming, for example, based on the
Laplace equation [30]. More modern variants of the method provide the movement of the
robot in the conditions of moving obstacles: based on evolutionary algorithms [31], based on
fuzzy artificial potential fields [32].

Sampling-based methods are the most modern of the classical algorithms. They use the
Monte-Carlo method to solve the problem of path planning. This group of methods includes
probabilistic road maps (PRM) [33], rapidly exploring random tree (RRT) [34].

Probabilistic road maps. This method builds a RM G =(V, E) by randomly generating

the coordinates of npoints q,,,, €C. Each point belonging to the free space q,,,4 € Cy 1S
added to the graph G . Points g€V are connected by edges with their neighbors q,.,, within

a given radius r (if such a combination does not cross obstacles (Q,0., ) 2 Cy)- The

disadvantage of this method is that to ensure sufficient accuracy of the road map, the number
of points q,,,, Will be large [28].

Rapidly exploring random tree. The method iteratively builds a RM G=(V,E). At
zero iteration, the tree contains one vertex (a random free space point g, € C;.. Or a start

free

point ¢, € C,.)- In the following iterations, random points q,,., € C.. are selected from the

free free

free space. On a straight line that connects a point q,,, with the nearest vertex of a tree
Ouar €V, @ NeW point is set aside at a given distance 0, . If (Quss Unew) € Crree » then the

vertex d,,, and edge (0,...0.,) are added to the tree G [13]. There are many improvements

to RRT: RRG — provides the optimal route [35], RRT* — a tree-like version of the algorithm
RRG [35], RT-RRT* — RRT variant, adapted to a dynamic environment by rearranging the
tree from the point where there is a robot in real time [36].

The listed classical methods use artificial abstract points of the environment. The
models assume that they are pairwise distinguishable; the localization problem is
deterministic. Such models of knowledge representation about points of the path cannot be
used by the situational movement control system in conditions of incomplete and fuzzy

free !
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information. The integration of these models into the system of situational planning and
control of a mobile robot is possible only at the conceptual level. This possibility is reflected
in the table. 1, where it is represented by supporting local replanning.
Table 1. Comparison of the classical approach methods.
Method Global replanning Local replanning

RM based on visibility graphs - -

RM based on Voronoi diagrams - -

Trapezoidal decomposition - -

Boustrophedon decomposition

Morse decomposition

Grid-based decomposition

Quadtree decomposition

Probability decomposition

Classic APF

Laplace APF

Evolutionary APF

Fuzzy APF

PRM

RRT

RRG - -

RRT* - -

RT-RRT* + +

+|+ 1
[

+ |+ [+ |+ ]|+
[

COMPUTATIONAL INTELLIGENCE BASED PATH PLANNING METHODS

Recently, algorithms that solve the problem of path planning based on computational
intelligence models have begun to appear. Within this approach, there are methods based on
fuzzy logic, neural networks, swarm algorithms [1, 3].

These methods fully include the remarks made above in relation to the classical
methods of path planning. An additional limitation in using them in real-time in autonomous
mobile systems is the need for large computing resources.

HYBRID METHODS OF PATH PLANNING

Hybrid methods combine global and local planning. This approach gives good results
for the conditions of a known but dynamic environment. Examples of systems that implement
hybrid algorithms are: global planning is carried out on a graph formed based on predefined
characteristic points of the environment, local — based on a fuzzy controller [37]; sampling
methods are combined with artificial potential fields using a fuzzy controller [38]; a simulated
annealing algorithm and a fuzzy Takagi-Sugeno controller are combined [39]. Hybrid
approaches best meet the above requirements of autonomous systems.

CONCLUSION

Currently, methods based on computational intelligence are being further developed.
Methods using a hybrid approach are also being developed, combining classical global
planning approaches with local planning approaches using sensory data.

A significant number of existing algorithms support the possibility of replanning, but
this requires updating global information about the environment at any time. A more adequate
situation for real tasks is when the robot has access to global information about the
environment at the beginning of the task, and in the course of execution, this information is
supplemented only locally, due to sensory data.

In research, not enough attention is paid to the development of approaches that provide
a homogeneous integration of solutions to various navigation problems. The exception is the
tasks of localization and mapping, which are solved simultaneously. Localization problems,
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path planning, and motion control in the works are considered separately, without considering
the mutual influence of errors arising at each stage.

Existing studies pay little attention to solving the problem of incompleteness and
fuzziness of information about the environment. Decisions arising based on incorrectly
perceived information about the environment have certain consequences, the fight against
which must be based on dynamic situational replanning.
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YYkpauncku Owvpircasen ynusepcumem no xcenezonvmen mpancnopm
Xapkoe, oyn.”@Doepoax’7,
YKPAHHA
’Bucue mpancnopmuo yuunuuie «Tooop Kaonewkoe» , ya. ,,]'eo Munee“ Nel58
BBbJITAPUA

Knwuoeu oOymu: asmonomen mobunen pobom, Hasueayus, onpeoeiswe — HA
mpaexmopuu

Pe3stome: Ancopummume 3a onpedensane HA MPAeKMOPUAMA HA MOOUIHU pobomu ce
aHaIu3upam om 2ne0Ha MoyKka Ha 6b3MONCHOCIIMA 34 MAXHOMO U3NON36AHE 34 A8MOHOMHU
cucmemu. Ocobeno enumanue ce OMoesi Ha AHANU3A HA 8bIMONCHOCIMUME HA KIACUYecKume
HOOX00U 3a OCbUECMEas8ane Ha A8MOHOMHO NpenaHupane Ha mpaekmopuu Ha 6azama Ha
CEH30pHU OAHHU NPU HEONPEeOeleHOCM U pasmMumocm Ha uHgopmayuonnume yciosus. Cpeo
aneopummume Ha Ki1ACU4ecKus no0xXo0 Hali-a0anmueHu ce OKa3eam me3u, KOUmo usnois3eam
U3KYCMeeHU NomeHyuaiHu noiema u memooa na Monme Kapio.

B mpeocmasenama paboma ce 0okazea, we noseyemo ancOpummu, GKIUUMENTHO
mesu, 6a3upaHu Ha NOOX00d HA USUUCTUMETHAMA UHMENUSEHMHOCH, OCUSYPABAMm
Npenianupane Ha MmMpaeKmopusma camo Ha 0azama Ha NOCMOAHHO AKMYaiusupame Ha
enobannama ungopmayus 3a okoanama cpeoa. Iloxazano e, ue XubpuoHusm nooxoo 3a
pewiasane Ha npobiema ¢ NIAHUPAHEMO HA MpAacemo e HAlu-a0anmuHUsm, Cbuyemasauy
MexXHuUKume Ha 2100aTHOMO U MecmHOmMO nianupauwe. Memooume Ha mo3u NOOX0O
cvouemasam Kiacuvecku Mooenu 3a NIAHUpame ¢ MOOenu, OA3UpaHu HA UHUCIUMENTHA
uHmenueeHmHocm. B OonviHeHue KoM U3I0MNCEHOMO € NOKA3AHO, Ye  8bHpPOCHN 3d
XOMO2EeHHOCMMA HA UHMeZPUPAHemo HA peulenus 34 pPA3IudHU HABULAYUOHHU 3aA0ayu U
83AUMHOMO 6GIUAHUE HA ZcpeuiKume, 6b3HUKBAWU HA 6CEKU Om emanume, e 6ce oue
HeQOCmamv4HO U3CIe08AH.
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