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 Abstract: In this paper we investigate a 3D autonomous dissipative nonlinear system 

of ODEs- Rossler prototype-4 system. The analysis reveals that the system may exhibit the 

phenomena of Shilnikov chaos. Further, it is shown via analytical calculations that the 

considered system can be presented in the form of a linear oscillator with one nonlinear 

automatic regulator. Finally, it is found that for some new combinations of parameters, the 

system demonstrates chaotic behavior and transition from chaos to regular behavior is 

realized through inverse period-doubling bifurcations. 

 

1. INTRODUCTION 

 In the last thirty years, many authors have been intrigued by the quest for the 

mathematically simplest systems of various types that can exhibit chaos [1-5]. An good 

example is the book of J. Sprott [4] in which he discover: 1) some new systems that are 

simpler than those previously know; 2) these new systems are otherwise more “elegant” by 

virtue of the number of parameters- their values, special symmetry and economy of notation. 

 It is well-known that chaos cannot occur in dissipative two dimensional systems (one 

degree of freedom) of ordinary differential equations (ODEs). Chaos requires at systems with 

least one and a half degrees of freedom. Such systems have so-called strange attractors (the 

trajectory winds around forever, never repeating) with noninteger dimension. In a three-

dimensional continuous dissipative dynamical systems the only possible spectra, and the 

attractors, are as follows: a strange attractor, a two-torus, a limit cycle, a fixed point [6-8] 

 Mathematical representation of a spatial order and chaos are saddle equilibria, saddle 

periodic movements or complex saddle invariant set. According to [9], around a saddle-focus 

equilibrium a systematic characterization of homoclinicity can be provided. In other words, if 

the Shilnikov condition is satisfied, i.e. the saddle-focus index 1Re
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and 2  are the leading eigenvalues), then an infinity number of non-periodic trajectories 

coexist in the vicinity of a homoclinic trajectory bi-asymptotic to the saddle-focus. For more 

details see [10]. 
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 For a long period of time the Lorenz and Rossler systems were regarded as the 

simplest chaotic autonomous dissipative systems of ODEs. In this paper we consider the so-

called Rossler prototype-4 system given by  
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where   3,, Rzyx   are the state variables. It is seen that system (1) has only six terms, a 

single quadratic nonlinearity and two parameters. The system was numerically studied in [1, 

3, 4]. It was shown that for 5.0 ba  the system (1) has chaotic behavior, and for 

   1,0,1,0  ba  has different dynamics- unbounded, periodic and chaotic solutions. 

 In this paper, using analytical and numerical tools, we investigate the dynamical 

behavior of system (1). The plan is as follows: in Section 2 we present analytical and 

numerical results concerning the system (1). In Section 3 we summarize our results. 

 

2. ANALYTICAL AND NUMERICAL RESULTS 

 In this section, we consider the system (1) which present an autonomous dynamical 

model. The equilibrium (steady state) points of system (1) are:  0,0,01O  and 
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O  The divergence of the flow (1) is: 

 

(2)       ,033 betD
z

z

y

y

x

x
tD bt 














 

 

 

where  03 tD  is a volume element. The system (1) is dissipative, when   03 tD , i.e. .0b  

 In order to determine the character of fixed points 1O  and 2O , we make the following 

substitutions into (1): 
 

(3)   zxzyxyxxx  321 ,, . 
 

Hence, after some transformations, the system (1) has the form: 
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where  yac 21 . The Jacobian matrixes associated to the system (4) at 1O  and 2O  are: 
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Thus, the characteristic equation possesses the form: 
 

(6)    .023  rqp   
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According to the Routh-Hurwitz criteria the fixed points of system (1) will be stable if 
        0,0,0,01,0 1121  arpqRbarbarqbp  and 

    .0222  barpqR  For  1,5.1a  and  8.0,29.0b  we obtain that the two fixed 

points 1O  and 2O  at bifurcation parameters a  and/or b  are from saddle-focus type (i) 

negative real eigenvalue and complex eigenvalues with positive real part (unstable focus); ii) 

positive real eigenvalue and complex eigenvalues with negative real part (stable focus)), and 

for some subintervals the fixed point 2O  can be from stable focus type. These two fixed 

points can be included in homoclinic/heteroclinic structures of Shilnikov type, where their 

invariant manifolds SW  and UW , are meeting each other in a most intricate manner. 

 For 6.0,5.1  ba  and 35.0,1  ba  the equilibriums and their eigenvalues are 

given by: 
 

  ,0,0,01O    then    i1414.15754.0,5508.0,, 321  ; 

  6.0,6.0,02 O         then    i0664.10928.0,7855.0,, 321  . 
 

  ,0,0,01O    then    i1031.14097.0,4694.0,, 321  ; 

  6.0,6.0,02 O         then    i0569.11127.0,5754.0,, 321  . 
 

 It is easy to see that the system (1) can be presented in the form of a (non)-linear 

oscillator with one automatic regulator. In general form we have 
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where   is a small parameter,  yg  is a nonlinear polynomial function and V  is the potential 

in the form  
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 [11]. For system (1) we have: 0210   , 

12   and 11  . Hence, for the system (1) we can write 
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where 
b

ak  , and the potential of the system is yz
y

V 
2

2

. The energy of the system (1) is 

2

2y
VE


 . Here we note that Lorenz system also can be presented in the form (7) as 

0,1 1210   , 12   and   2yyg   [11]. 

 It is well-known that a homoclinic/heteroclinic cycle is one of the common scenarios 

of the appearance of chaotic behavior. In our case here, the known analytical approaches in 

this direction are not applicable [12, 13], and we are forced to use numerical simulations of 

our system (1). Hence, we find new results for its bifurcation behavior and routes to chaos. 

 Figure 1 shows bifurcation diagrams for the system (1): (a) values of y  coordinate 

and (b) values of z coordinate are plotted against b  regarded as a continuously varying 

control (bifurcation) parameter, when the parameter 5.1a  is fixed. It is seen that for 



VII-4 

 

 525.0,495.0b  the system is chaotic. On a further increase of the bifurcation parameter b , 

the system (1) exhibits inverse period doubling bifurcations leading to a periodic motion. 

 
Figure.1. Bifurcation diagrams: a)  ty  versus b ; and b)  tz  versus b , generated by computer solution of the 

system (1) at 5.1a . The initial conditions are       .1.0000  zyx  Note that  8.0,495.0b . 

 

 In Figure 2 the bifurcation diagrams of the system (1) are shown. It can be seen that at 

 32.0,315.0b  chaotic solution occurs. In analogy with the previous case, the system passes 

from chaos to regular motion after inverse period doubling bifurcations. It is interesting to 

note that here the system (1) has regular solutions at the beginning and in the end of the 

interval for the control parameter b . Comparing Fig.1 and Fig. 2 we conclude that in the case, 

when 5.1a  the chaotic zone is longer than those obtained in Fig. 2 for .1a  

 
Figure 2. Bifurcation diagrams: a)  ty  versus b ; and b)  tz  versus b , generated by computer solution of the 

system (1) at 1a . The initial conditions are       .1.0000  zyx  Note that  65.0,29.0b . 

 

3. CONCLUSION 

 The paper presents a study of the dynamic behavior of the so-called Rossler prototype-

4 system, using analytical and numerical tools. The governing equations were solved 

numerically using MATLAB (The MathWorks, Inc., Natick, MA, USA). For all simulations 

the initial conditions were       .1.0000  zyx  We find that: 1) the system (1) has two 

fixed points from saddle-focus type, and therefore homoclinic/heteroclinic structures of 

Shilnikov type take place; 2) for values of the coefficients a  and b  different from these in 

[4], the system (1) has chaotic solutions; 3) the original system (1) can be presented in the 

form of a linear oscillator with one nonlinear automatic regulator. 

 Finally, the proposed study is a first step to the profound and fill analysis of the system 

(1). 

(a) (b) 

(a) (b) 
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 Ключови думи: анализ, хаос, прототип -4 Рьослерова система 

 Резюме: В тази статия изследваме една 3D автономна дисипативна нелинейна 

система от ОДУ- Rossler prototype-4 системата. Анализът ѝ показва, че тя може да 

прояви явлението Шилников хаос. По-нататък е показано чрез аналитични 

пресмятания, че изследваната система може да бъде предстевена във вид на линеен 

осцилатор с нелинеен автоматичен регулатор. Най-накрая е намерено, че за някои 

нови комбинации на стойностите на параметрите, системата показва хаотично 

поведение като преходът от хаос към регулярно поведение се реализира чрез обратни 

бифуркации на удвояване на периода. 


