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Abstract: In this paper we investigate a 3D autonomous dissipative nonlinear system
of ODEs- Rossler prototype-4 system. The analysis reveals that the system may exhibit the
phenomena of Shilnikov chaos. Further, it is shown via analytical calculations that the
considered system can be presented in the form of a linear oscillator with one nonlinear
automatic regulator. Finally, it is found that for some new combinations of parameters, the
system demonstrates chaotic behavior and transition from chaos to regular behavior is
realized through inverse period-doubling bifurcations.

1. INTRODUCTION

In the last thirty years, many authors have been intrigued by the quest for the
mathematically simplest systems of various types that can exhibit chaos [1-5]. An good
example is the book of J. Sprott [4] in which he discover: 1) some new systems that are
simpler than those previously know; 2) these new systems are otherwise more “elegant” by
virtue of the number of parameters- their values, special symmetry and economy of notation.

It is well-known that chaos cannot occur in dissipative two dimensional systems (one
degree of freedom) of ordinary differential equations (ODESs). Chaos requires at systems with
least one and a half degrees of freedom. Such systems have so-called strange attractors (the
trajectory winds around forever, never repeating) with noninteger dimension. In a three-
dimensional continuous dissipative dynamical systems the only possible spectra, and the
attractors, are as follows: a strange attractor, a two-torus, a limit cycle, a fixed point [6-8]

Mathematical representation of a spatial order and chaos are saddle equilibria, saddle
periodic movements or complex saddle invariant set. According to [9], around a saddle-focus
equilibrium a systematic characterization of homoclinicity can be provided. In other words, if

VA

and y, are the leading eigenvalues), then an infinity number of non-periodic trajectories

coexist in the vicinity of a homoclinic trajectory bi-asymptotic to the saddle-focus. For more
details see [10].

the Shilnikov condition is satisfied, i.e. the saddle-focus index & = <1 (where y,
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For a long period of time the Lorenz and Rossler systems were regarded as the
simplest chaotic autonomous dissipative systems of ODEs. In this paper we consider the so-
called Rossler prototype-4 system given by

X=-y—-12,
1) y=X,
2=—bz+aly-y?),

where (x, y,z)e R® are the state variables. It is seen that system (1) has only six terms, a
single quadratic nonlinearity and two parameters. The system was numerically studied in [1,
3, 4]. It was shown that for a=b=0.5 the system (1) has chaotic behavior, and for
a<(0,1], b e(0,1] has different dynamics- unbounded, periodic and chaotic solutions.

In this paper, using analytical and numerical tools, we investigate the dynamical
behavior of system (1). The plan is as follows: in Section 2 we present analytical and
numerical results concerning the system (1). In Section 3 we summarize our results.

2. ANALYTICAL AND NUMERICAL RESULTS
In this section, we consider the system (1) which present an autonomous dynamical

model. The equilibrium (steady state) points of system (1) are: Ol(0,0,0) and

o, (0,1+ b : —1—9). The divergence of the flow (1) is:
a a

(2) Ds(t)=%+%+%: D,(t,)xe™ =-b,

where D;,(t,) is a volume element. The system (1) is dissipative, when D,(t)<0, i.e. b>0.

In order to determine the character of fixed points O, and O,, we make the following
substitutions into (1):

(3) X=X+X,Yy=X+Y,2=X+Z.
Hence, after some transformations, the system (1) has the form:

Xl ==X, X3,
(4) Xzlel

" 2
X; = CX, —bX, —ax;,

where c= a(l— 237). The Jacobian matrixes associated to the system (4) at O, and O, are:

0 -1 -1 o -1 -1
(5) Jol =1 0O O , Joz =1 0 0|
0 a -b 0-a-2b -b

Thus, the characteristic equation possesses the form:

(6) 2 +pri+ay+r=0.
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According to the Routh-Hurwitz criteria the fixed points of system (1) will be stable if
p=b>0,q=1>0,rY=a+b>0,r%=-a-b>0,RY=pg-rY=-a>0 and
R® = pg—r®=a+2b>0. For ac[-1.5,1] and b <(0.29,0.8] we obtain that the two fixed
points O, and O, at bifurcation parameters a and/or b are from saddle-focus type (i)
negative real eigenvalue and complex eigenvalues with positive real part (unstable focus); ii)
positive real eigenvalue and complex eigenvalues with negative real part (stable focus)), and
for some subintervals the fixed point O, can be from stable focus type. These two fixed
points can be included in homoclinic/heteroclinic structures of Shilnikov type, where their
invariant manifolds W* and W" , are meeting each other in a most intricate manner.

For a=-1.5,b=0.6 and a=-1,b=0.35 the equilibriums and their eigenvalues are
given by:

0,(0,0,0), then (1, 7, 75)=(0.5508, —0.5754 +1.1414i);
0,(0,0.6,-0.6)  then (%, 7,, #5)=(~0.7855, 0.0928 +1.0664i ).
0,(0,0,0), then (z,, 7,, 2,)=(0.4694, —0.4097 +1.1031i);

0,(0,0.6,-0.6)  then (1, 7,, x5)=(~0.5754,0.1127 +1.0569i ).

It is easy to see that the system (1) can be presented in the form of a (non)-linear
oscillator with one automatic regulator. In general form we have

(7) Vz—%, 2=-¢lz-g(y)],

where ¢ is a small parameter, g(y) is a nonlinear polynomial function and V is the potential

4 2 i
in the form Vz%—f‘(ai—ﬁiz)yf [11]. For system (1) we have: o,=a, =f3,=0,
i

i=1
a,=-1and S =1. Hence, for the system (1) we can write

j=— T oy
®) oy |

2 =—b[z—kg(y)]=—bz +aly—y?),

2

where k = fy , and the potential of the systemis V = y? + yz . The energy of the system (1) is

.2
E=V +y?. Here we note that Lorenz system also can be presented in the form (7) as

ay=la,=a,=p,=0, f,=1and g(y)=y® [11].

It is well-known that a homoclinic/heteroclinic cycle is one of the common scenarios
of the appearance of chaotic behavior. In our case here, the known analytical approaches in
this direction are not applicable [12, 13], and we are forced to use numerical simulations of
our system (1). Hence, we find new results for its bifurcation behavior and routes to chaos.

Figure 1 shows bifurcation diagrams for the system (1): (a) values of y coordinate

and (b) values of zcoordinate are plotted against b regarded as a continuously varying
control (bifurcation) parameter, when the parameter a=-1.5 is fixed. It is seen that for
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b [0.495, 0.525] the system is chaotic. On a further increase of the bifurcation parameter b,
the system (1) exhibits inverse period doubling bifurcations leading to a periodic motion.
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Figure.1. Bifurcation diagrams: a) y(t) versus b ; and b) z(t) versus b, generated by computer solution of the
system (1) at a=—1.5. The initial conditions are x(0)= y(0)=z(0)=0.1. Note that b e[0.495,0.8].

In Figure 2 the bifurcation diagrams of the system (1) are shown. It can be seen that at
be [0.315,0.32] chaotic solution occurs. In analogy with the previous case, the system passes
from chaos to regular motion after inverse period doubling bifurcations. It is interesting to
note that here the system (1) has regular solutions at the beginning and in the end of the
interval for the control parameter b . Comparing Fig.1 and Fig. 2 we conclude that in the case,
when a=-1.5 the chaotic zone is longer than those obtained in Fig. 2 for a=-1.
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Figure 2. Bifurcation diagrams: a) y(t) versus b ; and b) z(t) versus b, generated by computer solution of the

system (1) at a=—1. The initial conditions are x(0)= y(0)=z(0)=0.1. Note that b <[0.29, 0.65].

3. CONCLUSION

The paper presents a study of the dynamic behavior of the so-called Rossler prototype-
4 system, using analytical and numerical tools. The governing equations were solved
numerically using MATLAB (The MathWorks, Inc., Natick, MA, USA). For all simulations
the initial conditions were x(0)=y(0)=2(0)=0.1. We find that: 1) the system (1) has two

fixed points from saddle-focus type, and therefore homoclinic/heteroclinic structures of
Shilnikov type take place; 2) for values of the coefficients a and b different from these in
[4], the system (1) has chaotic solutions; 3) the original system (1) can be presented in the
form of a linear oscillator with one nonlinear automatic regulator.

Finally, the proposed study is a first step to the profound and fill analysis of the system
Q).
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AHAJIM3 HA ETJHA IMHAMHNYHA CUCTEMA OT PBOCJIEPOB BU/1

Caerocaas I'. Hukosos'?

'Bucwie mpancnopmno yuunuwie ,, T. Kaonewkoe”, yn. I. Munee Ne 158, 1574 Cogpus,
2I/Ihccmumym no mexanuka-bAH, yn. Axao. I'. Bonues, oa. 4, 1113 Coghus,
BBIITAPUA

Knrouosu oymu: ananus, xaoc, npomomun -4 Pvocieposa cucmema

Pesztome: B masu cmamus uzcneosame eona 3D asmonomna oucunamuena nenuneina
cucmema om O/[V- Rossler prototype-4 cucmemama. Ananuzom 1 nokazea, ue ms modxce 0d
nposieu  serenuemo Illunnuxos xaoc. Ilo-namamvk e NOKA3AHO upe3 AHATUMUYHU
NpecMAmMAaHus, ye u3Ccie08anama cucmema modxce 0a 6voe npedcmedena 6b8 U0 HA JTUHEeH
ocyunamop ¢ HenuHeen asmomamuyen pezynamop. Haii-naxkpas e namepeno, ue 3a HAKOU
HOBU KOMOUHAYUU HA CMOUHOCMUME HA napamempume, CUCMEMAMA NOKA36d XAOMUUHO
noseodeHue Kamo npexoovm om Xaoc KvM pe2yisapHO NOBEOeHUe ce Peaiusupa upe3 oopamuu
bugyprayuu Ha y08osisane Ha Nepuood.
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