
XI-14 

 

 

 

 

 

 

 

 

 

CREATING ARCHITECTURE AND SOFTWARE OF EMBEDDED 

SYSTEMS WITH CONSTRAINED RESOURCES AND THEIR 

COMMUNICATION TO THE IOT CLOUD 
 

Neven Nikolov, Ognyan Nakov 
n.nikolov@tu-sofia.bg 

 

Department of Computer System and Technology,  

Technical University of Sofia, Sofia 1000, 

BULGARIA 

 

Key words: Embedded systems, IoT Cloud, Microcontroller, Software, MQTT, Esp32, 

PIC18f47K40, net core MVC 

Abstract: This article described creating architecture, software and communication of 

IoT devices with constrained resources to IoT Cloud. Also is described soft-ware realization 

and architecture of IoT Cloud. Used physical environment is WiFi network, which is wide 

widely used in home environment. In article is shown way for connection the constrained 

microcontrollers to centralized Cloud, sending and receiving data between them. 

 

1. INTRODUCTION 

Nowadays, the number of Internet related devices - IoT - is growing steadily. They are 

most often connected to a centralized cloud system that provides data storage, processing, and 

management through dedicated algorithms. Cloud computing [1] [2] [3] provides storage of 

data through databases, processing of received data, as well as remotely merging IoT devices 

on the part of the client. The IoT devices themselves can be anything like both use and use, 

and owned resources. IoT devices can be comprised of limited resources microcontrollers, 

such as RAM, permanent flash memory and, of course, CPU processors. With the use of 

micro controllers with sufficiently large resources, any methods and algorithms can be applied 

to securely and securely transmit data between the IoT embedded system and Cloud Structure. 

When using constrained resource microcontrollers [4], it is sometimes impossible to 

implement a TCP stack or high-level data protocol. It is possible to use protocols with low or 

no protection, but this only reduces the security of the system. The use of a microcontroller 

with limited resources is justified by their low cost, or the microcontrollers themselves are 

designed to perform responsible operation such as phase or frequency drive control or real 

time pulse intercept. To solve the real-time cloud-based system management synchronization 

problem, it is necessary to connect the microcontroller with limited resources to another 

microcontroller that has enough RAM to implement a TCP stack and to fit a TLS certificate 

for encrypting data to and from the Cloud. 

 

2. REVIEW 

The tested IoT embedded system is used to control real-time fan speeds and other 

consumers such as a heater and a water pump. The communication between the IoT 

Mechanics                                            ISSN 1312-3823 (print) 

Transport                                              ISSN 2367-6620 (online) 
Communications                          volume 17, issue 1, 2019 
Academic journal      http://www.mtc-aj.com       article № 1752 

http://www.mtc-aj.com/


XI-15 

embedded system and the cloud structure can be accomplished by using different physical 

environments and protocols [6]. Physical data transfer environments are determined by the 

environment in which the devices will be located. Physical environments can be by using a 

wired connection, such as Ehternet, as well as a wireless connection to WiFI, LoraWan, 

ZigBee, 2G, 3G, and so on. This article discusses cases in which a WiFI wireless connection 

is used, which physical environment is quite widespread. Cloud structure communication uses 

the built-in ESP32 wrover system, which has a 32-bit dual-core Tensilica Xtensa LX6 

processor running at 240Mhz and a 520kb SRAM capable of using TLS and SSL encryption 

certificates. The ESP32 has WiFi radio module and 4Mb Flash memory. The PIC18f47K40 

microcontroller, which has an 8-bit RISK architecture processor running at 64Mhz, is used to 

control the readers and read the sensors. Real-time fan speed control uses a 8-bit 

PIC18F14K22 micro controller, with only 512 bytes of RAM. The three microcontrollers are 

compared in Table 1. For communication between the three microcontrollers, a UART data 

bus is used. 

The MQTT protocol [5], which operates on the Publisher / Sub-scriber principle, is 

used to build communication between Cloud Structure and IoT. Each device can be 

subscribed to a topic. The server part uses the .net core MVC technology with MariaDB 

database. 
Table 1. Comparison between ESP32 wrover and PIC18F47K40. 

Microcontroller CPU Flash Memory RAM WiFi 

ESP32 wrover 8 bit, Risk, 64Mhz 4Mb 520kbytes yes 

PIC18F47K40 32 bit, 240Mhz, Dual Core 128Kb 3728 bytes no 

PIC18F14K22 8 bit, Risk, 64Mhz 16Kb 5120 bytes no 
     

 

3. ARCHITECTURE 

The microcontrollers communicate with each other in accordance with principles 

described in this chapter. A UART bus was used to communicate between them. ESP32 takes 

care of establishing communication with the Cloud and direct data exchange with 

PIC18F47K40. Both devices play the role of Master and Slave, Master being PIC18F47K40 

and Slave ESP32. A diagram of the microcontroller connection in the IoT device is shown in 

Figure 1. The construction of the communication is described in Chapter 4.  

The PIC18F14K22 microcontroller reads the data output from PIC18F47K40 to 

ESP32. The format of the protocol also includes the parameters needed for the revolutions of 

the electric motor. The microcontroller is responsible for the phase control of the motor.The 

construction and description of the protocol are described later in chapter IV. The 

communication protocol used between ESP32 and Cloud Structure is MQTT.  

For the Cloud structure [7] [8] , a DELL PowerEdge R510 server was used with the 

CentOs 7 operating system, where MQTT Broker Mosquitto was used to receive and transmit 

data from the devices and to the server that subscribed to all the threads on all the devices it 

supports. The technology used is the .net core MVC, which uses the C # programming 

language. The database used is MariaDB. The architecture that uses the .NET core server is 

the MVC, which has three layers - Model View Controller described in Chapter 4. A cloud 

structure summary scheme is shown in Fig. 2. 

 

 

 

 

 

 

 



XI-16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Communication between ESP32, PIC18F14K22 and PIC18F47K40 using UART bus in IoT 

Embedded Device 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Communication between Cloud structure and IoT Embedded Devices 

 



XI-17 

4. SOFTWARE REALIZATION 

The low-level programming languages C and C ++ were used for the software 

implementation of the IoT device. The IoT Cloud software implementation uses the .net core 

MVC technology, the programming language being C #. The ESP32 program implementation 

includes multi-threaded programming, reading and writing data over the UART interface, 

logical part, and receiving and transmitting data to IoT Cloud. The programming language 

used is C ++, with Arduino IDE being used for development. For communication between 

ESP32 and IoT Cloud, the MQTT protocol was used, using the Pub-SubClient library. Three 

threads were used to send data via UART bus, receive data over the UART bus, and receive 

IoT Cloud data: 

returnValue = pthread_create(&ReceiveUARTthread, NULL,                           (1) 

ReceiveUART, NULL); 

returnValue = pthread_create(&TransmitUARTthread, NULL, TransmitUART, 

NULL); 

returnValue = pthread_create(&LogicThread, NULL,Logic, NULL); 

To send data to IoT Cloud, use the "client.publish (mqtt_topic_SEND, JSON-

messageBuffer)" feature in the void loop () function. The void loop () function plays an 

endless loop in the main thread. For the communication of ESP32 to IoT Cloud, the MQTT 

protocols are used, defining data acquisition and data submission topics, Table 2. Fragments 

of the program code are shown below: 

const char* mqtt_topic_SEND = "Tx000001";     (2) 

const char* mqtt_topic_RECEIVE = " Rx000001";  

void loop() { 

client.subscribe(mqtt_topic_RECEIVE); 

if (client.publish(mqtt_topic_SEND, JSONmessageBuffer) == true) { 

#if DEBUG_MODE == true 

Serial.println("Success sending message"); 

#else 

MQTTbrokerMess =  MQTTBrokerSend_Success; 

 
Table 2. MQTT protocol Receive and Transmit topics. 

Variable 

String 
Device            Value Topic              

Type Message Serial number 

IoT 

device 

mqtt_topic_SEND 1 Tx000001 Tx – Transmit 000001 

mqtt_topic_RECEIVE  Rx000001          
Rx - Transmit 000001 

 

mqtt_topic_SEND 2             Tx000002          Tx – Transmit 000002 

mqtt_topic_RECEIVE  Rx000002          Rx - Transmit 000002 

 

Receiving IoT Cloud data is performed using the callback function: 

void callback(char* topic, byte* buffer, unsigned int length) {              (3) 

char temp[100] ;    

String s; 

for (int i = 0; i < length; i++) { 

Serial.print((char) buffer [i]); 

temp[i] = (char) buffer [i] ; 

     } 

temp[length] = '\0'; 

  s = temp; 



XI-18 

} 

The UART protocol send thread is built from a non-continuous "for (;;)" cycle, and the 

function that writes on the serial port is "Serial.write". The delay function (1000), which 

delays 100ms, is used to send and receive data from the PIC18F47K40 microcontroller: 

void *TransmitUART(void *threadid) {        (4) 

unsigned short Counter = 0; 

for(;;){ 

Serial.write( RingBufferTransmitUART[Counter] ); 

delay(1000); // delay for 100ms 

if( Counter < ( RBbufferSIZE -1 ) ){ 

Counter ++; 

}else{ 

Counter = 0; 

} 

} 

} 

The UART protocol receive thread is also built by an endless "for (;;)" cycle, the 

special one being that it has a byte-byte counter and traces of received byte with a integer 

value of " InputByteStream == 255 ". When a byte of 255 variable "InputByteStreamCount" 

is reset and the process starts scanning again all received bytes: 

void *ReceiveUART(void *threadid) {        (5) 

for(;;){ 

if(Serial.available()>0) { //Checks is there any data in buffer 

InputByteStream =  Serial.read(); 

If ( InputByteStream == 255 ){ 

InputByteStreamCount = 0; 

} 

switch(InputByteStreamCount){ 

case 1:{ 

ONoFF = InputByteStream; 

}break; 

/. . . . / 

case 11:{ 

STATUsMes  = InputByteStream; 

}break; 

} 

InputByteStreamCount ++; 

} 

vTaskDelay(10); 

IoT Cloud's software implementation utilizes the .Net Core 2.2 technology that uses 

the MVC Model View Controler. The language used is C #, and the logical part of receiving 

and receiving data from the broker is in the "Program.cs" class where the main function is 

located. MQTT broker Mosquitto works with .Net Core 2.2 on the Centos 7 operating system. 

Functions “MqttClient”, “MqttMsgPublishReceived”, “Subscribe” and anothers serve for 

receive and transmit MQTT messages[9]. The following code shows how to perform the 

.NET Core 2.2 with MQTT broker: 

public static void Main(string[] args) {         (6) 

Console.WriteLine("Waiting..."); 

Console.WriteLine("Starting Client"); 

client = new MqttClient("localhost"); 



XI-19 

var clientId = Guid.NewGuid().ToString(); 

client.Connect(clientId, "admin", "admin"); 

string[] topic = { Topic };byte[] qosLevels = 

{MqttMsgBase.QOS_LEVEL_AT_LEAST_ONCE }; 

client.Subscribe(topic, qosLevels);  

client.MqttMsgPublishReceived = Client_MqttMsgPublishReceived; 

 /. . . . / 

The Connect function serves as a link to the MQTT broker. In the "Models" layer, 

there are classes such as "UserModel.cs", "InitializeData-base.cs", "DatabaseManager", 

"ErrorViewModel.cs", "JSONparce.cs", "DeviceID.cs" and 

"DeviceProtocolMessageSTACK.cs". The "JSONparce.cs" class contains data processing 

fields between ESP32 and PIC18F47K40: 

public class JSONparce  {         (7) 

        //               ONoFF  

        public decimal  A { get; set; } 

        //               TemperaturePump 

        public decimal  B { get; set; } 

        //               STATUs 

       public decimal  C { get; set; } 

        //               PwmFan 

       public decimal  D { get; set; } 

    /. . . . / 

Table 3 shows MQTT communication in message format in JSON type format. 

 
Table 3. MQTT protocol messages field definition between ESP32 and PIC18F47K40 

Nimber      

Type 

Name          Description Example 

1 Integer      A               On/ Off Consumers 
1 - Start Pump 

0 - Stop Pump 

2 Integer      B               Temperature Pump 34*C 

3 Integer      C               Power  IoT device 600 W 

4 Integer       D               PWM Fan 60% 

 

The Controller layer contains the "HomeController.cs" class that communicates 

directly with the layers like Model and View. Layout View contains files such as 

"Index.cshtml" and "IoTdeviceLandingView.cshtml", which contain the FrontEnd visual part 

of the system in front of the user. There are fields to visualize the on or off state of the 

consumers, monitor parameters such as real-time temperature and switch on and off 

consumers. 

 

5. EXPERIMENTAL RESULTS 

A USB / UART converter is used to listen to the communication between ESP32, 

PIC18F47K40 and PIC18F14K22. The "Terminal" program is used, whereby port 9 of the test 

computer is open to a 2400 baut rate data rate. In Fig. 5, the red color is enclosed by the 

transmission speed and value tag 255, which distinguishes each new data session from 

PIC18F47K40 to ESP32 and PIC18F14K22. Figure 4 shows the message sent from ESP32 to 

IoT Cloud, using the JSON format sent in the MQTT message. In fig. 6 are shown received 

message in .Net Core Server Application in console of CentOS 7. 

 



XI-20 

 
Fig. 4. Communication between Cloud structure and ESP32 – sending  data in JSON format to IoT Cloud. 

 

 
Fig. 5. Communication between Cloud structure and IoT Embedded Devices 

 



XI-21 

 
Fig. 6. Show received message in .Net Core Server Application in console of CentOS 7 

 

6. CONCLUSION 

Connecting a IoT device with limited resources to the IoT Cloud structure is a great 

challenge because the device needs to make secure and reliable communication in order to 

function properly. A certain microcontroller is used to manage the consumers in real time. But 

here the problem of managing it over an Internet connection is conditioned by the fact that it 

needs to have sufficient resources to build a security level. For this purpose another 

microcontroller is used, its purpose being to make a reliable and secure connection with the 

Cloud. This article provides secure and reliable consumer management by building an 

appropriate architecture.   

Author Contributions: The conception in this research was created, (N.K) and (O.N); 

software (N.K); experimental production, (N.K); conceptualization (O.N); analysis 

methodology, (N.K) and (O.N); research, (N.K); 

Acknowledgments: The paper is published with the support of the project No 

BG05M2OP001-2.009-0033 ''Promotion of Contemporary Research Through Creation of 

Scientific and Innovative Environment to Encourage Young Researchers in Technical 

University - Sofia and The National Railway Infrastructure Company in The Field of 

Engineering Science and Technology Development'' within the Intelligent Growth Science 

and Education Operational Programme co-funded by the European Structural and Investment 

Funds of the European Union. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

 

REFERENCES 

[1] A.Alshehri, R. Sandhu, “Access Control Models for Virtual Object Communication in 

Cloud-Enabled IoT”, IEEE Computer society, pp:16-25, 2017 

[2] J. Weinman, “The Strategic Value of the Cloud”, IEEE Cloud Computing, vol.2, pp 66-

70, 2015   

[3] H.Truong, S.Dustdar, “Principles for Engineering IoT Cloud Systems”, vol.2, pp.68-76, 

2015.   

[4] S.Nastic, H. Truong, S. Dustdar, “A programming model for resource-constrained iot 

cloud edge devices”, Banff, IEEE international Conference on systems, 2017. 

[5] Stanford-Clark, H.Linh Truong, “MQTT For Sensor Networks (MQTT-SN)”, Protocol 

Specification, November 14, 2013, IBM. 

[6] Postscapes, “IoT Standards and Protocols”, 2018’ 



XI-22 

[7] Botta, W. de Donato, V. Persico, A. Pescap´e, “Integration of Cloud Computing and 

Internet of Things: a Survey”, September 18, 2015 

[8] Cloud Standards Customer Concil, “Cloud Customer Architecture for IoT”, 2016 

[9] eclipse.org,  “C# .Net and WinRT Client” , 2019 

 

 

© 2019 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 

 

 

 

СЪЗДАВАНЕ НА АРХИТЕКТУРА И СОФТУЕР НА ВГРАДЕНИ 

СИСТЕМИ С ОГРАНИЧЕНИ РЕСУРСИ И ТЯХНАТА СВЪРЗАНОСТ 

КЪМ IOT ОБЛАК 
 

Невен Николов, Огнян Наков 
n.nikolov@tu-sofia.bg 

 

Технически университет – София 

София 1000, бул. „Климент Охридски“ 8 

БЪЛГАРИЯ 

 

Ключови думи: Вградени системи, IoT облак, микроконтролер, софтуер, MQTT, 

Esp32, PIC18f47K40, мрежово ядро MVC 

Резюме: Тази статия описва създаването на архитектура, софтуер и 

комуникация на IoT устройства с ограничени ресурси към IoT облак. Също така е 

описана софтуерна реализация и архитектура на IoT облак. Използваната физическа 

среда е WiFi мрежа, която е широко използвана в домашната среда. В статията е 

показан начин за свързване на ограничени микроконтролери към централизиран облак, 

изпращане и получаване на данни между тях. 


