Mechanics ISSN 1312-3823 (print)
Transport ISSN 2367-6620 (online)
Communications volume 17, issue 1, 2019

Academic journal http://www.mtc-aj.com article Ne 1752

CREATING ARCHITECTURE AND SOFTWARE OF EMBEDDED
SYSTEMS WITH CONSTRAINED RESOURCES AND THEIR
COMMUNICATION TO THE IOT CLOUD

Neven Nikolov, Ognyan Nakov
n.nikolov@tu-sofia.bg

Department of Computer System and Technology,
Technical University of Sofia, Sofia 1000,
BULGARIA

Key words: Embedded systems, 10T Cloud, Microcontroller, Software, MQTT, Esp32,
PIC18f47K40, net core MVC

Abstract: This article described creating architecture, software and communication of
0T devices with constrained resources to 10T Cloud. Also is described soft-ware realization
and architecture of 10T Cloud. Used physical environment is WiFi network, which is wide
widely used in home environment. In article is shown way for connection the constrained
microcontrollers to centralized Cloud, sending and receiving data between them.

1. INTRODUCTION

Nowadays, the number of Internet related devices - 10T - is growing steadily. They are
most often connected to a centralized cloud system that provides data storage, processing, and
management through dedicated algorithms. Cloud computing [1] [2] [3] provides storage of
data through databases, processing of received data, as well as remotely merging 10T devices
on the part of the client. The 10T devices themselves can be anything like both use and use,
and owned resources. 10T devices can be comprised of limited resources microcontrollers,
such as RAM, permanent flash memory and, of course, CPU processors. With the use of
micro controllers with sufficiently large resources, any methods and algorithms can be applied
to securely and securely transmit data between the 10T embedded system and Cloud Structure.
When using constrained resource microcontrollers [4], it is sometimes impossible to
implement a TCP stack or high-level data protocol. It is possible to use protocols with low or
no protection, but this only reduces the security of the system. The use of a microcontroller
with limited resources is justified by their low cost, or the microcontrollers themselves are
designed to perform responsible operation such as phase or frequency drive control or real
time pulse intercept. To solve the real-time cloud-based system management synchronization
problem, it is necessary to connect the microcontroller with limited resources to another
microcontroller that has enough RAM to implement a TCP stack and to fit a TLS certificate
for encrypting data to and from the Cloud.

2. REVIEW

The tested loT embedded system is used to control real-time fan speeds and other
consumers such as a heater and a water pump. The communication between the 10T

XI-14

http://www.mtc-aj.com/

embedded system and the cloud structure can be accomplished by using different physical
environments and protocols [6]. Physical data transfer environments are determined by the
environment in which the devices will be located. Physical environments can be by using a
wired connection, such as Ehternet, as well as a wireless connection to WiFI, LoraWan,
ZigBee, 2G, 3G, and so on. This article discusses cases in which a WiFI wireless connection
is used, which physical environment is quite widespread. Cloud structure communication uses
the built-in ESP32 wrover system, which has a 32-bit dual-core Tensilica Xtensa LX6
processor running at 240Mhz and a 520kb SRAM capable of using TLS and SSL encryption
certificates. The ESP32 has WiFi radio module and 4Mb Flash memory. The PIC18f47K40
microcontroller, which has an 8-bit RISK architecture processor running at 64Mhz, is used to
control the readers and read the sensors. Real-time fan speed control uses a 8-bit
PIC18F14K22 micro controller, with only 512 bytes of RAM. The three microcontrollers are
compared in Table 1. For communication between the three microcontrollers, a UART data
bus is used.

The MQTT protocol [5], which operates on the Publisher / Sub-scriber principle, is
used to build communication between Cloud Structure and loT. Each device can be
subscribed to a topic. The server part uses the .net core MVC technology with MariaDB

database.
Table 1. Comparison between ESP32 wrover and PIC18F47K40.

Microcontroller CPU Flash Memory RAM WiFi
ESP32 wrover 8 bit, Risk, 64Mhz 4Mb 520kbytes yes
PIC18F47K40 32 bit, 240Mhz, Dual Core 128Kb 3728 bytes no
PIC18F14K22 8 bit, Risk, 64Mhz 16Kb 5120 bytes no

3. ARCHITECTURE

The microcontrollers communicate with each other in accordance with principles
described in this chapter. A UART bus was used to communicate between them. ESP32 takes
care of establishing communication with the Cloud and direct data exchange with
PIC18F47K40. Both devices play the role of Master and Slave, Master being PIC18F47K40
and Slave ESP32. A diagram of the microcontroller connection in the 10T device is shown in
Figure 1. The construction of the communication is described in Chapter 4.

The PIC18F14K22 microcontroller reads the data output from PIC18F47K40 to
ESP32. The format of the protocol also includes the parameters needed for the revolutions of
the electric motor. The microcontroller is responsible for the phase control of the motor.The
construction and description of the protocol are described later in chapter IV. The
communication protocol used between ESP32 and Cloud Structure is MQTT.

For the Cloud structure [7] [8] , a DELL PowerEdge R510 server was used with the
CentOs 7 operating system, where MQTT Broker Mosquitto was used to receive and transmit
data from the devices and to the server that subscribed to all the threads on all the devices it
supports. The technology used is the .net core MVC, which uses the C # programming
language. The database used is MariaDB. The architecture that uses the .NET core server is
the MVC, which has three layers - Model View Controller described in Chapter 4. A cloud
structure summary scheme is shown in Fig. 2.

XI1-15

Master
) PIC18F47K40 .
': I, :' Slave
) TX TRX X[h
UART 5 ©
RX

nnnnnnnn.n.n.nxnm

) PIC18F14K22

SLAVE

Fig. 1. Communication between ESP32, PIC18F14K22 and PIC18F47K40 using UART bus in loT
Embedded Device

aet Core MVC

protocol
Publish/Subscribe -

SSL

MQTT Broker Messages

Centos 7 Operating GET
PORT 8883 system poRrT 8883 PUT
TSL SSL — TSLSSL

= MQTT = Client Web

Publish/Subscribe E1Of0COL o . N becribe Browser

-
e b

- i F - L

i
I et o L S|
PR ML WiFi 1.\"'__ i
\'.... ,.’ £ .-’

IoT IoT
Device Device

et

Fig. 2. Communication between Cloud structure and loT Embedded Devices

Xl1-16

4. SOFTWARE REALIZATION

The low-level programming languages C and C ++ were used for the software
implementation of the 10T device. The 10T Cloud software implementation uses the .net core
MVC technology, the programming language being C #. The ESP32 program implementation
includes multi-threaded programming, reading and writing data over the UART interface,
logical part, and receiving and transmitting data to 1oT Cloud. The programming language
used is C ++, with Arduino IDE being used for development. For communication between
ESP32 and loT Cloud, the MQTT protocol was used, using the Pub-SubClient library. Three
threads were used to send data via UART bus, receive data over the UART bus, and receive
0T Cloud data:

returnVValue = pthread_create(&ReceiveUARTthread, NULL, 1)

ReceiveUART, NULL);

returnValue = pthread_create(&TransmitUARTthread, NULL, TransmitUART,
NULL);

returnValue = pthread_create(&LogicThread, NULL,Logic, NULL);

To send data to loT Cloud, use the "client.publish (mqtt_topic SEND, JSON-
messageBuffer)" feature in the void loop () function. The void loop () function plays an
endless loop in the main thread. For the communication of ESP32 to IoT Cloud, the MQTT
protocols are used, defining data acquisition and data submission topics, Table 2. Fragments
of the program code are shown below:

const char* mqtt_topic_SEND ="Tx000001"; (@)
const char* mqtt_topic RECEIVE =" Rx000001";
void loop() {

client.subscribe(mqtt_topic RECEIVE);

if (client.publish(mqtt_topic_SEND, JSONmessageBuffer) == true) {
#if DEBUG_MODE == true

Serial.printIn("Success sending message");

#else

MQTTbrokerMess = MQTTBrokerSend_Success;

Table 2. MQTT protocol Receive and Transmit topics.
Type Message Serial number

Variable

. Device Value Topic IoT
String i
device
mgqtt_topic_SEND 1 Tx000001 Tx — Transmit 000001
mgtt_topic_RECEIVE Rx000001 R~ Transmit 000001
mgqtt_topic_SEND 2 Tx000002 Tx — Transmit 000002
mqtt_topic_RECEIVE Rx000002 Rx - Transmit 000002

Receiving 10T Cloud data is performed using the callback function:

void callback(char* topic, byte* buffer, unsigned int length) { (3)
char temp[100] ;

String s;

for (inti=0; i < length; i++) {

Serial.print((char) buffer [i]);

temp[i] = (char) buffer [i] ;

¥
temp[length] ="\0";
s = temp;

XI-17

b

The UART protocol send thread is built from a non-continuous "for (;;)" cycle, and the
function that writes on the serial port is "Serial.write”. The delay function (1000), which
delays 100ms, is used to send and receive data from the PIC18F47K40 microcontroller:

void *TransmitUART (void *threadid) { (4)
unsigned short Counter = 0;
for(;;){

Serial.write(RingBufferTransmitUART[Counter]);
delay(1000); // delay for 100ms

if(Counter < (RBbufferSIZE -1) {

Counter ++;

Jelse{

Counter = 0;

}

}

}

The UART protocol receive thread is also built by an endless "for (;;)" cycle, the
special one being that it has a byte-byte counter and traces of received byte with a integer
value of " InputByteStream == 255 ". When a byte of 255 variable "InputByteStreamCount"
is reset and the process starts scanning again all received bytes:

void *ReceiveUART (void *threadid) { (5)

for(;;){

if(Serial.available()>0) { //IChecks is there any data in buffer

InputByteStream = Serial.read();

If (InputByteStream == 255){

InputByteStreamCount = 0;

}

switch(InputByteStreamCount){

case 1:{

ONOoFF = InputByteStream;

}oreak;

lo...]

case 11:{

STATUsMes = InputByteStream;

}oreak;

}

InputByteStreamCount ++;

}

vTaskDelay(10);

0T Cloud's software implementation utilizes the .Net Core 2.2 technology that uses
the MVVC Model View Controler. The language used is C #, and the logical part of receiving
and receiving data from the broker is in the "Program.cs” class where the main function is
located. MQTT broker Mosquitto works with .Net Core 2.2 on the Centos 7 operating system.
Functions “MqttClient”, “MqttMsgPublishReceived”, “Subscribe” and anothers serve for
receive and transmit MQTT messages[9]. The following code shows how to perform the
.NET Core 2.2 with MQTT broker:

public static void Main(string[] args) { (6)

Console.WriteLine("Waiting...");

Console.WriteLine("Starting Client");

client = new MqttClient("localhost");

Xl1-18

var clientld = Guid.NewGuid().ToString();

client.Connect(clientld, "admin™, "admin");

string[] topic = { Topic };byte[] qosLevels =
{MqttMsgBase.QOS_LEVEL_AT_LEAST_ONCE },

client.Subscribe(topic, qosLevels);

client. MgttMsgPublishReceived = Client_MqttMsgPublishReceived,;

lo...]

The Connect function serves as a link to the MQTT broker. In the "Models" layer,
there are classes such as "UserModel.cs”, “InitializeData-base.cs”, "DatabaseManager",
"ErrorViewModel.cs", "JSONparce.cs", "DevicelD.cs" and
"DeviceProtocolMessageSTACK.cs". The "JSONparce.cs" class contains data processing
fields between ESP32 and PIC18F47KA40:

public class JSONparce { (7)
1l ONOoFF
public decimal A { get; set; }
1 TemperaturePump
public decimal B { get; set; }
1l STATUs
public decimal C { get; set; }
1 PwmFan
public decimal D { get; set; }
lo...1

Table 3 shows MQTT communication in message format in JSON type format.

Table 3. MQTT protocol messages field definition between ESP32 and PIC18F47K40

Nimber Name Description Example
Type
1 Integer A On/ Off Consumers 1 - Start Pump
0 - Stop Pump
2 Integer B Temperature Pump 34*C
3 Integer C Power IoT device 600 W
4 Integer D PWM Fan 60%

The Controller layer contains the "HomeController.cs” class that communicates
directly with the layers like Model and View. Layout View contains files such as
"Index.cshtml™ and "loTdeviceLandingView.cshtml", which contain the FrontEnd visual part
of the system in front of the user. There are fields to visualize the on or off state of the
consumers, monitor parameters such as real-time temperature and switch on and off
consumers.

5. EXPERIMENTAL RESULTS

A USB / UART converter is used to listen to the communication between ESP32,
PIC18F47K40 and PIC18F14K22. The "Terminal” program is used, whereby port 9 of the test
computer is open to a 2400 baut rate data rate. In Fig. 5, the red color is enclosed by the
transmission speed and value tag 255, which distinguishes each new data session from
PIC18F47K40 to ESP32 and PIC18F14K22. Figure 4 shows the message sent from ESP32 to
IoT Cloud, using the JSON format sent in the MQTT message. In fig. 6 are shown received
message in .Net Core Server Application in console of CentOS 7.

X1-19

OSending message to MOTT topic..

{"&™:0,"B":210,"C":0,"D":9, "E":0,"F":0,"H":0,"K™:0,"L":0, "M":0, "H":0}

Success sending message

O05ending message to MOTT topic..

{"A™:0,"B":210,"C":0,"D"z%, "E":0,"F":0,"H":0,"K":0,"L"z0, "M":0,"H":0}

Success sending message

AldSending message to MOTT topic..

{"A™:0,"B":210,"C":0,"D"z%, "E":0,"F":0,"H":0,"K":0,"L"z0, "M":0,"H":0}

Success sending message

Fig. 4. Communication between Cloud structure and ESP32 — sending data in JSON format to loT Cloud.

G COM Part—— — Baud rate
] t
:zgr;r;l:: " 600 i~ 14400 ¢ 57600
" Hem coms -] " 19200 ¢ 115200
“aooe || cows (L2000 € 28800 ¢ 128000
About.. 3 7 4800 38400 ¢ 756000
Quit | " 9600 ¢ 56000 ¢ custom
—Setting |
et font | [Auto Dis/Cornect [~ Time [Sheamlog T Cous

[~ AutoStart Serpt [~ CR=LF [Stay on Top JA36
|

—Recere

CLEAR I v AutaScrol Heset Entl 13 5| Cnt= 10

FF 00 00
191B 00

00 00 a0
FF 0000
13 1B 00

19 1B 00 05 00 0000 01[FF 00 00 00
00 0000 01(ER 0000 001316 00 05
[FF 00 000019 18 00 05 00 00 00 01
15
oo

i} A
05

01

0019 1B 00 05 00000001 FF 00 00 00
0500000001 FF 000000159 1E 00 05

000000071 FF 0000001918 0005 000000 o1
FFOOOOOO019 1B 000500 000001 FF OO 0000

191B 000500000001 FFOO 00001916 0005
Q0000007 FFOO000019 18 00 0% 00 0000 o1
FFOOOOOO019 1B 000500 0000 01 FF 000000
191B 000500000001 FFOO00 001916 0005

[T2s5]

Fig. 5. Communication between Cloud structure and loT Embedded Devices

Xl1-20

File Edit View Search Terminal Help

User profile is available. Using '/root/.aspnet/DataProtection-Keys' as ke
y repository; keys will not be encrypted at rest.
Received JSON: A:0,B:210,C:0,D:9,E:0,F:0,H:0,K:0,L:0,M:0,N:0}
Hll: Microsoft.EntityFrameworkCore.Infrastructure[10403]
Entity Framework Core 2.1.2-rtm-30932 initialized 'EnvWatchContext' using
provider 'Pomelo.EntityFrameworkCore.MySql' with options: None
Received JSON: A:0,B:210,C:0,D:9,E:0,F:0,H:0,K:0,L:0,M:0,N:0}
Hll: Microsoft.EntityFrameworkCore.Database.Command[20181]
Executed DbCommand (90ms) [Parameters=[], CommandType='Text', CommandTimec
ut="'30"]
Hosting environment: Development
Content root path: /home/neven/iot
Now listening on: https://localhost:5001
Now listening on: http://localhost:5000
Application starfed, Press Cirl+C fo shuf down
Received JSON: A:0,B:210,C:0,D:9,E:0,F:0,H:0,K:0,L:0,M:0,N:0} |

Fig. 6. Show received message in .Net Core Server Application in console of CentOS 7

6. CONCLUSION

Connecting a 10T device with limited resources to the 10T Cloud structure is a great
challenge because the device needs to make secure and reliable communication in order to
function properly. A certain microcontroller is used to manage the consumers in real time. But
here the problem of managing it over an Internet connection is conditioned by the fact that it
needs to have sufficient resources to build a security level. For this purpose another
microcontroller is used, its purpose being to make a reliable and secure connection with the
Cloud. This article provides secure and reliable consumer management by building an
appropriate architecture.

Author Contributions: The conception in this research was created, (N.K) and (O.N);
software (N.K); experimental production, (N.K); conceptualization (O.N); analysis
methodology, (N.K) and (O.N); research, (N.K);

Acknowledgments: The paper is published with the support of the project No
BG05M20P001-2.009-0033 "Promotion of Contemporary Research Through Creation of
Scientific and Innovative Environment to Encourage Young Researchers in Technical
University - Sofia and The National Railway Infrastructure Company in The Field of
Engineering Science and Technology Development" within the Intelligent Growth Science
and Education Operational Programme co-funded by the European Structural and Investment
Funds of the European Union.

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

[1] A.Alshehri, R. Sandhu, “Access Control Models for Virtual Object Communication in
Cloud-Enabled IoT”, IEEE Computer society, pp:16-25, 2017

[2] J. Weinman, “The Strategic Value of the Cloud”, IEEE Cloud Computing, vol.2, pp 66-
70, 2015

[3] H.Truong, S.Dustdar, “Principles for Engineering IoT Cloud Systems”, vol.2, pp.68-76,
2015.

[4] S.Nastic, H. Truong, S. Dustdar, “A programming model for resource-constrained iot
cloud edge devices”, Banff, IEEE international Conference on systems, 2017.

[5] Stanford-Clark, H.Linh Truong, “MQTT For Sensor Networks (MQTT-SN)”, Protocol
Specification, November 14, 2013, IBM.

[6] Postscapes, “IoT Standards and Protocols”, 2018’

XlI-21

[7] Botta, W. de Donato, V. Persico, A. Pescap’e, “Integration of Cloud Computing and
Internet of Things: a Survey”, September 18, 2015

[8] Cloud Standards Customer Concil, “Cloud Customer Architecture for IoT”, 2016
[9] eclipse.org, “C# .Net and WinRT Client”, 2019

© 2019 by the authors. Submitted for possible open access publication under the terms
@ @ and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).

CBb3JABAHE HA APXUTEKTYPA U CO®PTYEP HA BI'PAJIEHU
CUCTEMMU C OTPAHUYEHMU PECYPCHU U TAXHATA CBBP3AHOCT
KBM 10T OBJIAK

HeBen HuxoJs0B, Orusn Hakos
n.nikolov@tu-sofia.bg

Texnuuecku ynusepcumem — Coghusn
Cogpusn 1000, oyn. ,, Knumenm Oxpuocku“ 8
BBJITAPUA

Knwuoeu oymu: Bepaoenu cucmemu, loT obrax, muxpoxonmponep, cogpmyep, MQOTT,
Esp32, PIC18f47K40, mpeoicoso sopo MVC

Pe3tome: Tasu cmamus onucea cv30aeanemo Ha apxumekmypa, cogmyep u
komynuxayus Ha loT ycmpoticmea ¢ oepanuuenu pecypcu kvm loT obonak. Cvwo maka e
onucana cogpmyepna peanuzayus u apxumekmypa Ha loT obnax. Hznonseanama guszuuecka
cpeoa e WiFi mpedica, Kosmo e wupoko usnoi38ana 8 domawHama cpeoda. B cmamuama e

NOKA3AaH HAYUH 34 C6bP36AHE HA OZPAHUYEHU MUKDOKOHMPOJIEPU KbM YEHMPAIU3UPAH 06JZCZK,
usnpawiane u nojaydaeane Ha OaHHU MleC‘ay mAx.

Xl1-22

