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Abstract: in this paper we apply hamiltonian formalism to the analysis of dynamical
behavior of swing oscillatory motion. In the swing system, the swinger is modeled (idealized)
as a rigid dumbbell with three point masses, three lengths, an angular position with vertical
and an angular position relative to the ropes. Under these assumptions, for asymmetrical (all
masses and lengths are different) and symmetrical (two masses and two lengths are equal)
cases the hamiltonian is obtained. For the symmetrical case, we detect the existence of a
homoclinic orbit and present the equation for it.

MECHANICS AND MATHEMATICS

1. INTRODUCTION

Dynamical systems can be separated into two classes — integrable and nonintegrable
systems. A system from differential equations of the n™ order is completely integrable if it
has n independent integrals of motion. According to the Liouville theorem, for Hamiltonian
systems the existence of only N =n/2 integrals of motion is sufficient for integrability [1, 2].
Note, that it is only necessary for these integrals to be in involution, i.e, the Poisson brackets
for any pair of them should be equal to zero.

For a completely integrable Hamiltonian system, its Hamiltonian H(g, p) can be
reduced in the form H(P), where P = P(q, p) is the generalized momentum vector and all its
components are constants. It is well-known that the motion of an integrable Hamiltonian
system is regular, i.e., it is periodic or quasi-periodic. By contrast, the nonintegrable
Hamiltonian systems can be irregular (chaotic) [3, 4].

The discovery of irregular oscillations (chaotic behavior) in deterministic dynamical
systems with different nature (mechanical, biological, chemical and economical), has become
one of the most attractive area in science in recent 20¥ years [4, 5-7]. An important step
towards the understanding of the global dynamics of a system of differential equations is the
analysis of the existence of homoclinic/heteroclinic orbits (cycles). These orbits were first
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discovered by H. Poincare. In [8], he showed that the invariant manifolds of hyperbolic fixed
points could cut each other at points — called homoclinics.

In dynamical systems with three (and higher) dimensions, the presence of a
homoclinic orbit may imply the existence of chaotic behavior, horse shoes, and infinitely
many nearby bifurcations, depending on the eigenvalues of the Jacobian matrix of the flow at
the saddle point and on any symmetries that might be present in the system.

In Hamiltonian systems with more than one degree of freedom, the invariant
manifolds of the hyperbolic periodic orbits may intersect (splitting) in the so-called
homoclinic points. The presence of transversal homoclinic points implies the nonexistence of
single-valued analytic integrals of motion independent of the Hamiltonian. Hence, the
splitting of separatrices plays an important role in the creation of chaotic behavior [9, 10].
Note here, that in general the investigation of homoclinic points is quite complicated and
involves some variant of perturbation methods.

For now little is known about homoclinic orbits in Hamiltonian systems with two and
more than two degrees of freedom. In this paper we investigate a model of a swing pumped
from the seated position. In [11], Case and Swanson modeled the rider and the swing as a
compound pendulum, with a massive bob, m, at the rider’s position on the seat and the rest of

the body by two other bobs, m, that account for the extension of the body due to the rest of

the body parts-arms, legs, head and so on. As shown in Fig. 1b, the two other bobs (for
simplicity) of equal mass are represented as dumbbells that are positioned symmetrically
about the scat of the swing. Since the model uses a symmetrical dumbbell, the center of mass
of the swing is always at the position of the central mass, and therefore the parametric
mechanism — periodically varying the center of mass relative to the pivot — does not apply.
However, if the dumbbell is allowed to be asymmetric, then the center of mass will change
and a parametric energizing mechanism does come into play. In [11], it is shown that the
parametric mechanism dominates only as the amplitude becomes large.

In the full asymmetric dumbbell case the analysis becomes very complicated [12, 13].
This case is an idealization of pumping a swing while the rider is sitting down, as the effect
produced only by rotation of the rider’s body —see Fig. 1a. Using the notation in Fig. 1a, the
kinetic T and potential energy U for the system are as follows:

Figure 1. Person on a swing by point masses: a) the swinger is idealized as a rigid dumbbell with length 1, +1,,
as all mass is located in point-masses m, = m, = m,; b) the swinger is idealized as a rigid dumbbell
with length 21, and a pair of point-masses.

_1 _ (1. — 2+ 11 62
W T_2(|1+|2 2I,N cos0)¢* + (1, —I,N cos 0)p0 +5 1.0,

U =-MI,gcos ¢+ Ng cos(¢ + ),
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where |, is the length of massless rope of the playground swing, I, and I, are the lengths of
legs and torso, ¢ and @ are the angles, and m ,m, and m, are the dumbbell point-masses.
The notations M, N, 1, and 1, are adopted from [11] and have the form

2) M=m+m+m ,N=mlL-mlL, 1L =M 1,=2m]l..

Here we note that in the particular case when I, =1, and m, =m, (see Fig. 1b), then N =0.
This yields

T =2 (m+2m )"+ il

U =—(m, +2m,)gcos¢.

3)

Our paper is organized as follows: In Section 2, we obtain the analytical results for the
Hamiltonian of the models illustrated in Figure la and 1b. In Section 3, we present the
analytical results for homoclinic loop of the model considered in Figure 1b — Eq. (3). Finally,
Section 4 summarizes our results.

2. HAMILTONIAN FORM
To obtain the Hamiltonian H(g, p,,8, p,) of the model from Fig. 1a (Eq. (2)), we
firstly pass to the canonical momentum representation

_ar _or

4 =5y P g

This gives us the following expression for H

1 b
5 H=T-U=—+=(l.p*>+ap’)-—~— —Ml.gcos¢+ Ngcos(s+8),
(5) 2JZ(zpl a,p?) 7 PiP. = Mlgcosg-+Ng (¢+0)
where
(6) a1:Il+I2—2I1Ncose,bl=I2—I1Ncose,A=(a1I2—bf)z.

The time-evolution of the system is then governed by equations of motion

. oOH 1 - oH 1
=—=—(,p,-bp,), O=——=——(-hp +ap,)
¢ 6p1 \/Z( zpl 1p2) 6p2 \/Z( p +a1p )

(7) oH
b, = % =—Ml,gsing+ Ngsin(¢p—6), p, =Ngsin(p+6).

If N=0,ie. m,=m, and |, =1, (see Fig. 1b), then (5) and (7) have the form

(8) = {pf+(1+ . in}—iplpz+rmllg(1+28)008¢,
2y, 2y, v
.1 .1 1
¢:_ P—BR;)s 0=— _p1+(l+ Jp2:|’
9) l/ll( ) ‘//1{ 2y,

p, =mlg(l+2¢)sing, p,=0,
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where y, = mI2(1+2¢), y, =ml2gu?, and & = "2 <<1, = ||—2 <<1 are small parameters.
ml 1
In our considerations below we will investigate the model from Fig. 1b, i.e. Egs. (8)
and (9). It is seen that the Hamiltonian in (8) has no explicit time dependence and hence it is
conserved. When the Hamiltonian is conserved, the phase space stratifies into distinct

constant — H surfaces of dimension 2n—1. On the other hand, the vanishing of p, in (9)
allows us to consider p, as a constant of the motion, p, =c =const., thereby reducing the
problem to a single degree of freedom, i.e.

(10) ¢=Wi(p1—c) . b =mlg(l+2¢)sing.

The fixed points of the system (10) are
(11) ¢7=k7f , p.=C,

where k =0,£1,.... In the equilibrium states the velocity is constant, ¢, and the potential has
extreme. When k is an odd number, then U(;z?) has maximum. When k is an even number,

then U(;Z) has minimum. In other words, for k odd number the fixed points are hyperbolic
(saddles) and for k even number they are elliptic (centers). The first kind (saddle point) is
associated to two invariant manifolds: the stable one W* formed by all incoming orbits and
the unstable one W*" composed of outgoing orbits. If the invariant manifolds coincide, then
the so-called homoclinic connection (or another separatrix) takes place. Note that this
configuration is valid for integrable systems. In all other cases, W* and W* do not coincide
and can intersect along a homoclinic orbit: 1) transversally (at non zero angle) and non-
transversally (homoclinic tangency). In our case, the separatrix is a phase trajectory which

crosses the fixed point with coordinates (¢=ﬁ1=c,¢7=ﬁ), as the energy is

H=E=

—mlg(l+2¢).
i mlLg(l+2¢)

3. HOMOCLINIC SOLUTION OF (10)

In the previous section, we obtained some analytical results that we shall use in our
calculations to find a homoclinic solution of (10). In our considerations, we introduced the
small parameter ¢.

To find the equation of the homoclinic orbit we use the Lindstedt perturbation method.
For small perturbation parameter, ¢, the system has the form (10). The homoclinic solution
of system (10) satisfies the boundary conditions

12) p—>r, pp—>c, for t— 4o,
p—>-m, p—>c, for t——oo

The functions ¢ and p, as series in powers of & can be presented in the form

(13) ¢:¢o+6¢1+52¢2+'" ) p1:p10+‘5p11+82p12+"'

After substituting of (13) into (10) and accomplishing some transformations and analytical
calculations we obtain the following equations for the functions 6,, p,,
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1 . .
(plﬂ_c) , p10=_m1|195|n¢0'

(14) ¢ = iz

The function ¢, is defined by the equation

(15) ¢+, sing, =0,
yielding the homoclinic solution
(16) ¢,(t)=+2arctg(sh(em,t)),

where o, = % Hence, for function p,, we have
1

: 20
17 t)=+ml’ ——=.
(17) Palt) =m0

The solution (17) is also called a soliton (self-dependent wave) — see Fig. 2. It is well-known
that solitons are nonlinear waves which do not change their speed and shape after a fully

nonlinear interaction.
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Figure 2. A soliton solution for the velocity of the separatrix Eq. (17) (in (¢0, plo) plane) when: |, = 2.5[m],
m, =20 [kg] and time te [— 3, 3] is in seconds. Note that when we have sign “+° in (17), the soliton

motion is to the right (upper part of the separatrix).

4. CONCLUSION

It is well-known that the Hamiltonian presentation (formalism) of the dynamics is
more perfect than the Lagrangian presentation (formalism). This circumstance is especially
important in the theory of integrable systems and in the perturbation theory

Therefore, in this article, we used Hamiltonian formalism in exploring the dynamic
behavior of the swing oscillatory motion. Two cases — asymmetrical and symmetrical — were
considered. From the results obtained, it can be seen that in an asymmetrical case a complex
(chaotic) behavior can occur. In a symmetrical case a homoclinic structure arises around

which a periodic motion may occur.
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Knrwuosu oymu: ounamuka, noneewjo ce OCYuIUpawjo O08udiceHue, XamuimoHos
Gopmanuzom, XOMOKIUHUYHA OpOUMA

Pe3stome: B masu cmamust usnonzgame Xamuimonosus hopmaiu3zvm 3a aHAIU3UPAHe
Ha OUHAMUYHOMO NOGeOeHUe HA NI0Jeeujomo ce OCYUIUpawo osudxcenue. B noneewyama ce
cucmema, Josieewyusim ce e MOOeIUupan (Uoeanrusupamn) Kamo ovmoen ¢ mpu moykosu Macu,
mpu ObIANCUHU, eOHA beNI08A NOUYUSA CHPAMO BEPMUKANAMA U eOHA OMHOCUMENHA b2lo8d
no3uyust cnpamo evaicemo. Ilpu maxa Hanpasenume npuemanust, 3a ACUMempudHus (6CUYKU
MAcu U OBIANCUHU CA PA3TUYHU) U CUMEMPUYHUSL (08€ MACU U 08€ OBINCUHU CA PABHU) CIyHAU
e NOJYYeH XAMUNMOHUAHA. 3a CuMempuyHus CiyYyall e OMKPUMO CbUecmeysanemo Ha
XOMOKIUHUYHA OpOUMA U e NPeOCmAaseHo HeUHOMO YpasHeHue.

VII-12



