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Abstract: in this paper we apply hamiltonian formalism to the analysis of dynamical 

behavior of swing oscillatory motion. In the swing system, the swinger is modeled (idealized) 

as a rigid dumbbell with three point masses, three lengths, an angular position with vertical 

and an angular position relative to the ropes. Under these assumptions, for asymmetrical (all 

masses and lengths are different) and symmetrical (two masses and two lengths are equal) 

cases the hamiltonian is obtained. For the symmetrical case, we detect the existence of a 

homoclinic orbit and present the equation for it. 
 

 

MECHANICS AND MATHEMATICS 

 

1. INTRODUCTION 

 Dynamical systems can be separated into two classes – integrable and nonintegrable 

systems. A system from differential equations of the thn  order is completely integrable if it 

has n  independent integrals of motion. According to the Liouville theorem, for Hamiltonian 

systems the existence of only 2/nN   integrals of motion is sufficient for integrability [1, 2]. 

Note, that it is only necessary for these integrals to be in involution, i.e, the Poisson brackets 

for any pair of them should be equal to zero. 

 For a completely integrable Hamiltonian system, its Hamiltonian  pqH ,  can be 

reduced in the form  PH , where  pqPP ,  is the generalized momentum vector and all its 

components are constants. It is well-known that the motion of an integrable Hamiltonian 

system is regular, i.e., it is periodic or quasi-periodic. By contrast, the nonintegrable 

Hamiltonian systems can be irregular (chaotic) [3, 4].  

 The discovery of irregular oscillations (chaotic behavior) in deterministic dynamical 

systems with different nature (mechanical, biological, chemical and economical), has become 

one of the most attractive area in science in recent 20
ty

 years [4, 5-7]. An important step 

towards the understanding of the global dynamics of a system of differential equations is the 

analysis of the existence of homoclinic/heteroclinic orbits (cycles). These orbits were first 
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discovered by H. Poincare. In [8], he showed that the invariant manifolds of hyperbolic fixed 

points could cut each other at points – called homoclinics.  

 In dynamical systems with three (and higher) dimensions, the presence of a 

homoclinic orbit may imply the existence of chaotic behavior, horse shoes, and infinitely 

many nearby bifurcations, depending on the eigenvalues of the Jacobian matrix of the flow at 

the saddle point and on any symmetries that might be present in the system. 

 In Hamiltonian systems with more than one degree of freedom, the invariant 

manifolds of the hyperbolic periodic orbits may intersect (splitting) in the so-called 

homoclinic points. The presence of transversal homoclinic points implies the nonexistence of 

single-valued analytic integrals of motion independent of the Hamiltonian. Hence, the 

splitting of separatrices plays an important role in the creation of chaotic behavior [9, 10]. 

Note here, that in general the investigation of homoclinic points is quite complicated and 

involves some variant of perturbation methods. 

 For now little is known about homoclinic orbits in Hamiltonian systems with two and 

more than two degrees of freedom. In this paper we investigate a model of a swing pumped 

from the seated position. In [11], Case and Swanson modeled the rider and the swing as a 

compound pendulum, with a massive bob, 
1

m  at the rider’s position on the seat and the rest of 

the body by two other bobs, 
2

m  that account for the extension of the body due to the rest of 

the body parts-arms, legs, head and so on. As shown in Fig. 1b, the two other bobs (for 

simplicity) of equal mass are represented as dumbbells that are positioned symmetrically 

about the scat of the swing. Since the model uses a symmetrical dumbbell, the center of mass 

of the swing is always at the position of the central mass, and therefore the parametric 

mechanism – periodically varying the center of mass relative to the pivot – does not apply. 

However, if the dumbbell is allowed to be asymmetric, then the center of mass will change 

and a parametric energizing mechanism does come into play. In [11], it is shown that the 

parametric mechanism dominates only as the amplitude becomes large. 

 In the full asymmetric dumbbell case the analysis becomes very complicated [12, 13]. 

This case is an idealization of pumping a swing while the rider is sitting down, as the effect 

produced only by rotation of the rider’s body –see Fig. 1a. Using the notation in Fig. 1a, the 

kinetic T and potential energy U for the system are as follows: 

Figure 1. Person on a swing by point masses: a) the swinger is idealized as a rigid dumbbell with length 32 ll  , 

as all mass is located in point-masses 321 mmm  ; b) the swinger is idealized as a rigid dumbbell 

with length 22l  and a pair of point-masses. 
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where 
1
l  is the length of massless rope of the playground swing, 

2
l  and 

3
l  are the lengths of 

legs and torso,   and   are the angles, and 
21

,mm  and 
3

m  are the dumbbell point-masses. 

The notations 
1

,, INM  and 
2

I  are adopted from [11] and have the form 
 

(2)   2

222

2

112233321
2,,, lmIMlIlmlmNmmmM  . 

 

Here we note that in the particular case when 
32
ll   and 

32
mm   (see Fig. 1b), then 0N . 

This yields 
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Our paper is organized as follows: In Section 2, we obtain the analytical results for the 

Hamiltonian of the models illustrated in Figure 1a and 1b. In Section 3, we present the 

analytical results for homoclinic loop of the model considered in Figure 1b – Eq. (3). Finally, 

Section 4 summarizes our results. 

 

2. HAMILTONIAN FORM 

 To obtain the Hamiltonian  
21

,,, ppH   of the model from Fig. 1a (Eq. (2)), we 

firstly pass to the canonical momentum representation 
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This gives us the following expression for H  
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The time-evolution of the system is then governed by equations of motion 
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If 0N , i.e. 
32

mm   and 
32
ll   (see Fig. 1b), then (5) and (7) have the form 
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where   22

112

2

111
,21  lmlm  , and 1,1

1

2

1

2 
l

l

m

m
  are small parameters. 

 In our considerations below we will investigate the model from Fig. 1b, i.e. Eqs. (8) 

and (9). It is seen that the Hamiltonian in (8) has no explicit time dependence and hence it is 

conserved. When the Hamiltonian is conserved, the phase space stratifies into distinct 

constant – H surfaces of dimension 12 n . On the other hand, the vanishing of 
2

p  in (9) 

allows us to consider 
2

p  as a constant of the motion, .
2

constcp  , thereby reducing the 

problem to a single degree of freedom, i.e. 
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The fixed points of the system (10) are 
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where ...,1,0 k . In the equilibrium states the velocity is constant, c , and the potential has 

extreme. When k  is an odd number, then  U  has maximum. When k  is an even number, 

then  U  has minimum. In other words, for k  odd number the fixed points are hyperbolic 

(saddles) and for k  even number they are elliptic (centers). The first kind (saddle point) is 

associated to two invariant manifolds: the stable one sW  formed by all incoming orbits and 

the unstable one uW  composed of outgoing orbits. If the invariant manifolds coincide, then 

the so-called homoclinic connection (or another separatrix) takes place. Note that this 

configuration is valid for integrable systems. In all other cases, sW  and uW  do not coincide 

and can intersect along a homoclinic orbit: 1) transversally (at non zero angle) and non-

transversally (homoclinic tangency). In our case, the separatrix is a phase trajectory which 
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3. HOMOCLINIC SOLUTION OF (10) 

 In the previous section, we obtained some analytical results that we shall use in our 

calculations to find a homoclinic solution of (10). In our considerations, we introduced the 

small parameter  . 

 To find the equation of the homoclinic orbit we use the Lindstedt perturbation method. 

For small perturbation parameter,  , the system has the form (10). The homoclinic solution 

of system (10) satisfies the boundary conditions 
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The functions   and 
1

p  as series in powers of   can be presented in the form 
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After substituting of (13) into (10) and accomplishing some transformations and analytical 

calculations we obtain the following equations for the functions 
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The function 
0
  is defined by the equation 
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yielding the homoclinic solution 
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The solution (17) is also called a soliton (self-dependent wave) – see Fig. 2. It is well-known 

that solitons are nonlinear waves which do not change their speed and shape after a fully 

nonlinear interaction. 

 
Figure 2. A soliton solution for the velocity of the separatrix Eq. (17) (in  100 , p  plane) when:  ml 5.21  , 

 kgm 201   and time  3,3t  is in seconds. Note that when we have sign ‘+‘ in (17), the soliton 

motion is to the right (upper part of the separatrix). 
 

4. CONCLUSION 

 It is well-known that the Hamiltonian presentation (formalism) of the dynamics is 

more perfect than the Lagrangian presentation (formalism). This circumstance is especially 

important in the theory of integrable systems and in the perturbation theory 

Therefore, in this article, we used Hamiltonian formalism in exploring the dynamic 

behavior of the swing oscillatory motion. Two cases – asymmetrical and symmetrical – were 

considered. From the results obtained, it can be seen that in an asymmetrical case a complex 

(chaotic) behavior can occur. In a symmetrical case a homoclinic structure arises around 

which a periodic motion may occur. 
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Резюме: В тази статия използваме хамилтоновия формализъм за анализиране 

на динамичното поведение на люлеещото се осцилиращо движение. В люлеещата се 

система, люлеещият се е моделиран (идеализиран) като дъмбел с три точкови маси, 

три дължини, една ъглова позиция спрямо вертикалата и една относителна ъглова 

позиция спрямо въжето. При така направените приемания, за асиметричния (всички 

маси и дължини са различни) и симетричния (две маси и две дължини са равни) случаи 

е получен хамилтониана. За симетричния случай е открито съществуването на 

хомоклинична орбита и е представено нейното уравнение. 

 


