EFFECT OF HEAT TREATMENT ON THE HARDNESS OF OVERLAY WELDED LAYERS CONTAINING DIFFERENT CONCENTRATION OF NANOSIZED SiC

Hristo Kondov
hriko61@gmail.com

IMSTECH ”Acad. A Balevski” – BAS, 67, Shipchenski Prohod St., 1574 Sofia, BULGARIA

Key words: coated electrodes, arc overlay welding, nanomodifiers, nanosized SiC, nanoparticles, nanopowders, heat treatment, annealing, quenching, Vickers hardness.

Abstract: Samples of layers welded using coated electrodes containing nano-modified SiC in different concentration are made. The samples are then treated by annealing and hardening in two liquid environments, water and oil. The layers thus modified are tested for Vickers hardness HV15/15 as prepared, and both after annealing and hardening. The correlation between the hardness and the concentration of nanomodifier and the type of heat treatment is identified. An increase of the hardness of up to 193.5 percent compared to the reference sample and values for HV15/15 exceeding 900 kg/mm² are observed.

I. INTRODUCTION

The introduction of nanoceramic and nanodiamond powders in the structure of metals and alloys is increasingly applied to improve their mechanical characteristics. Depending on the amount of the added nanoparticles, being typically nitrides, carbides, oxides, or nanodiamonds, the products thus obtained can be provisionally divided in two groups:

Group 1: metal-matrix nanocomposites (MMNC) typically based on Al, Mg, and Cu with higher content of nanoparticles and most often produced by pressing, sintering and other methods not involving transition through liquid state [1].

Group 2: nanomodified metals, alloys, and layers with lower concentrations of nanoparticles and produced by methods involving transition through liquid state [2-6].

For the first group of materials heat treatment is often applied during the process of preparation. For the second group there are evidence about the effect of heat treatment on the quality of nanomodified tool steels and steel A106B published in [7, 8, 9].

The present work is a part of a larger-scale study on the properties of overlay welded layers obtained using electrodes with nanomodified coating [10, 11]. The results show significant grain refinement and substantial increase in hardness and wear resistance of the overlay welded layers [12]. The investigations with scanning electron microscope with X-ray analyzer JEOL (SEM – RMA), JXCA 733 detect the presence of particles that contain the nanomodifier [13].
The objective of present work is to find out:

- What is the variation of hardness of overlay welded nanomodified layers after annealing depending on the concentration of SiC nanomodifier used;
- If the annealed nanomodified metal is able to increase its hardness again after quenching;
- How the hardness of the nanomodified overlay welded layer depends on the concentration and the type of the nanomodifier introduced, as well as on the type of coolant during quenching.

II. EXPERIMENTAL

Samples with dimensions 10x10x6 mm from welded plates numbered 1-5 are prepared as follows:

1. Sample 1: overlay welded with electrode grade E300 without nanomodifier.
2. Sample 2: overlay welded with electrode grade E300 nanomodified with A/8 % SiC.
3. Sample 3: overlay welded with electrode grade E300 nanomodified with A/4 % SiC.
4. Sample 4: overlay welded with electrode grade E300 nanomodified with A/2 % SiC.
5. Sample 5: overlay welded with electrode grade E300 nanomodified with A % SiC.

The chemical composition of the overlay welded layers is determined by means of spectral analysis.

Vickers hardness HV15/15 is measured on the samples as prepared after overlay welding. All measurements are made using a Brinell Vickers hardness testing machine type HPO 250.

The samples for heat treatment are divided into two groups:

- The first group includes one specimen of each sample labeled with the sample number and indexed with one point for the particular lot quenched in oil.
- The second group includes one specimen of each sample labeled with the sample number and indexed with three points for the particular lot quenched in water.

In order to compare the hardness of samples with different percentage of nanomodifier after quenching and to start the following quenching from equal initial state for all samples, all samples from the two groups are fully annealed (at temperature 870 °C) and allowed to cool within the furnace.

After grinding to remove the oxides the Vickers hardness HV 15/15 is measured.

According to the diagram in Fig. 1 for the specific chemical composition of the welded layer (see the vertical line in the phase state diagram) the border of the austenitic area is at a temperature of about 820 °C.

The diagram on Fig. 2 is an illustration about the necessary cooling rate for the specific composition of the welded layer that ensures an almost entire martensitic structure. The cooling rates for quenching in oil or water are sufficient to ensure transition from austenitic to martensitic structure.
In order to ensure complete heat penetration, the samples are heated to 870 °C for 10 minutes. The two groups of samples are heated simultaneously in two separate baskets (Fig. 3) and then quenched, one basket in water and the other in oil. The surface areas are cleaned again and Vickers hardness HV 15/15 is measured.
III. RESULTS
The results from hardness measurement are shown in Fig. 4.

Fig. 4. Hardness of the nanomodified overlay welded layer

Tables 1 to 4 below show the particular values for hardness HV 15/15 measured, as well as the averages and the percentage increase of hardness after welding, annealing and quenching either in water or in oil depending in the concentration of the nanomodifier SiC compared to the reference sample.

Table 1. Hardness HV 15/15 after overlay welding measured on the surface of the overlay welded layer after grinding for leveling

<table>
<thead>
<tr>
<th>Measurement No</th>
<th>Reference Sample 1-E300</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content of nanomodifier SiC, %</td>
<td>None</td>
<td>A/8 %</td>
<td>A/4 %</td>
<td>A/2 %</td>
</tr>
<tr>
<td>1</td>
<td>Measurement No</td>
<td>365</td>
<td>548</td>
<td>679</td>
<td>526</td>
</tr>
<tr>
<td>2</td>
<td>318</td>
<td>652</td>
<td>652</td>
<td>538</td>
<td>771</td>
</tr>
<tr>
<td>3</td>
<td>341</td>
<td>633</td>
<td>519</td>
<td>602</td>
<td>779</td>
</tr>
<tr>
<td>Average</td>
<td>341.3</td>
<td>611.0</td>
<td>616.7</td>
<td>555.3</td>
<td>776.3</td>
</tr>
<tr>
<td>Increase compared to the reference sample, %</td>
<td>79.0</td>
<td>80.7</td>
<td>62.7</td>
<td>127.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Hardness HV 15/15 after annealing measured on the surface of the overlay welded layer after grinding to remove the oxide scale

<table>
<thead>
<tr>
<th>Measurement No</th>
<th>Reference sample E300-I</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content of nanomodifier SiC, %</td>
<td>None</td>
<td>A/8 %</td>
<td>A/4 %</td>
<td>A/2 %</td>
</tr>
<tr>
<td>1</td>
<td>Measurement No</td>
<td>230</td>
<td>285</td>
<td>311</td>
<td>301</td>
</tr>
<tr>
<td>2</td>
<td>252</td>
<td>285</td>
<td>311</td>
<td>305</td>
<td>287</td>
</tr>
<tr>
<td>3</td>
<td>243</td>
<td>262</td>
<td>293</td>
<td>305</td>
<td>262</td>
</tr>
<tr>
<td>Average</td>
<td>241.7</td>
<td>277.3</td>
<td>305.0</td>
<td>303.7</td>
<td>278.0</td>
</tr>
<tr>
<td>Increase compared to the reference sample, %</td>
<td>14.8</td>
<td>26.2</td>
<td>25.7</td>
<td>13.1</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Hardness HV 15/15 after quenching in oil measured on the surface of the overlay welded layer after grinding to remove the oxide scale

<table>
<thead>
<tr>
<th></th>
<th>Reference sample E300-1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content of nanomodifier SiC, %</td>
<td>None</td>
<td>A/8 %</td>
<td>A/4 %</td>
<td>A/2 %</td>
<td>A %</td>
</tr>
<tr>
<td>Measurement No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>336.0</td>
<td>937.0</td>
<td>904.0</td>
<td>815.0</td>
<td>779.0</td>
</tr>
<tr>
<td>2</td>
<td>329.0</td>
<td>806.0</td>
<td>971.0</td>
<td>833.0</td>
<td>746.0</td>
</tr>
<tr>
<td>3</td>
<td>297.0</td>
<td>893.0</td>
<td>948.0</td>
<td>937.0</td>
<td>788.0</td>
</tr>
<tr>
<td>Average</td>
<td>320.7</td>
<td>878.7</td>
<td>941.0</td>
<td>861.7</td>
<td>771.0</td>
</tr>
<tr>
<td>Increase compared to the reference sample, %</td>
<td>174.0</td>
<td>193.5</td>
<td>168.7</td>
<td>140.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Hardness HV 15/15 after quenching in water measured on the surface of overlay weld layer after grinding to remove the oxide scale

<table>
<thead>
<tr>
<th></th>
<th>Reference sample E300-1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content of nanomodifier SiC, %</td>
<td>None</td>
<td>A/8 %</td>
<td>A/4 %</td>
<td>A/2 %</td>
<td>A %</td>
</tr>
<tr>
<td>Measurement No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>339</td>
<td>872</td>
<td>883</td>
<td>686</td>
<td>730</td>
</tr>
<tr>
<td>2</td>
<td>410</td>
<td>815</td>
<td>771</td>
<td>738</td>
<td>883</td>
</tr>
<tr>
<td>3</td>
<td>391</td>
<td>843</td>
<td>754</td>
<td>788</td>
<td>693</td>
</tr>
<tr>
<td>Average</td>
<td>380</td>
<td>843.3</td>
<td>802.7</td>
<td>737.3</td>
<td>768.7</td>
</tr>
<tr>
<td>Increase compared to the reference sample, %</td>
<td>121.9</td>
<td>111.2</td>
<td>94.0</td>
<td>102.3</td>
<td></td>
</tr>
</tbody>
</table>

As is seen, the ability of the annealed overlay welded metal to recover its hardness after quenching is proven beyond doubt. The increase of hardness of the overlay welded layers quenched in water reaches 121.9 % compared to the reference sample, while the hardness of the same layer quenched in oil showed an increase of up to 193.5 % compared to reference sample.

Table 5 below summarizes the average values for the hardness from Tables 1 to 4 in relation with the content of nanomodifier SiC and the heat treatment applied.

<table>
<thead>
<tr>
<th></th>
<th>Average hardness HV 15/15, kg/mm² measured:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content of SiC</td>
<td>As prepared</td>
</tr>
<tr>
<td>Reference sample</td>
<td>341.3</td>
</tr>
<tr>
<td>A/8 %</td>
<td>611.0</td>
</tr>
<tr>
<td>A/4 %</td>
<td>616.7</td>
</tr>
<tr>
<td>A/2 %</td>
<td>555.3</td>
</tr>
<tr>
<td>A %</td>
<td>776.3</td>
</tr>
</tbody>
</table>
Fig. 5. The diagram illustrates the variation of hardness HV 15/15 depending on the concentration of SiC and the heat treatment applied.

IV. CONCLUSIONS
1. In all conditions – after overlay welding, after full annealing, and after quenching in two coolants - the hardness of the nanomodified overlay welded layers is higher than that of the reference sample.
2. The samples containing A/4% SiC and A/2% SiC show increase of hardness with 26.2% and 25.7% respectively. This evidence proves the suggestion that the nanomodified layers have higher hardness even in annealed state.
3. The hardness of nanomodified layers after quenching in oil are higher than that after quenching in water unlike the layers overlay welded using the reference electrode E 300.
4. As is seen from Fig. 5, the hardness increases with the increase of the nanomodifier SiC until level A/2% and then starts to decrease. This indicates a threshold with respect to the content of nanomodifier beyond which the hardness does not further increase.
5. The achieved values for the hardness of overlay layers nanomodified with SiC are comparable with those of layers obtained through overlay welding using expensive high-alloyed electrodes.
6. The application of quenching after overlay welding results in further increase of the hardness. The increase of hardness of quenched layers found herein reaches 193.5% compared to the reference sample, and the values for hardness HV 15/15 exceed 900 kg/mm².
7. The electrodes nanomodified with SiC provide higher hardness of the surfaces after overlay welding.
8. Based on the results obtained, it becomes possible to optimize of the welding mode to achieve higher hardness of the overlay layers by ensuring increased cooling rates of the overlay layers in the process of welding. This can be realized allying some of the following measures:
 - Increased time between the consecutive welding seams;
 - Heat removal through a solid cooling element, most often made of copper or brass, in contact with the treated material;
 - Forced cooling with liquids or gases.
9. The research presented creates opportunities for significant economic effects in the application of the newly developed electrodes in practice.
ACKNOWLEDGMENTS

The author expresses his gratitude to Prof. Plamen Tashev from IMSTECH "Acad. A Balevski" – BAS, Sofia, Bulgaria, and to Prof. Roumen Petrov from the Department of Materials Science and Engineering, Ghent University, Belgium, for their valuable advices and recommendations.

REFERENCES

[10] П. Ташев, Х. Кондов, Я. Лукарски, Е. Ташева, „Разработване на наномодифицирани електроди за ръчно електродъгово наваряване, твърдост на наварения слой“, Инженерни науки, год. LII, 2015, № 3, научно списание „Инженерни науки“ към Българска Академия на Науките, стр. 71, ISSN 1312-5702
ВЛИЯНИЕ НА ТЕРМИЧНАТА ОБРАБОТКА ВЪРХУ ТВЪРДОСТТА НА НАВАРЕНИ СЛОЕВЕ СЪДЪРЖАЩИ НАНОРАЗМЕРЕН SiC В РАЗЛИЧНА КОНЦЕНТРАЦИЯ

Христо Кондов
hriko61@gmail.com

ИМСТЦХ – БАН”Акад. А. Балевски”, София 1574, ул. “Шипченски проход 67, БЪЛГАРИЯ

Ключови думи: обмазани електроди, електроди, електродъгово наваряване, наномодификатори, наноразмерен SiC, нанокомпозити, термична обработка, отпряване, закаляване, твърдост по Викерс.

Резюме Изработени са пробни образци от наварени слоеве с електроди, съдържащи в обмазката си наномодификатор SiC в различна концентрация. Извършено е отпряване и следващо закаляване в две охлаждащи среди – вода и масло. Измерена е твърдостта по Викерс HV 15/15 на образците в състояние след наваряне, след отпряване и след закаляване. Показано е изменението на твърдостта на наварените слоеве в зависимост от концентрацията на наномодификатора в вида термообработка. Установени са ръст на твърдостта на наномодифицираните наварени слоеве след термообработка достигащ до 193.5 % спрямо базовия образец и стойности на твърдостта HV 15/15 над 900 kg/mm².

1. УВОД
Въвеждането на нанокерамични и нанодиамантени прахове в структурата на метали и сплави с цел подобряване на експлоатационните им характеристики се прилага все по-често. В зависимост от количеството на добавените наночастици — обикновено нитриди, карбиди, окиси или нанодиаманти, получените метални продукти могат условно да се разделят на две групи: Първа група - металоматрични нанокомпозити (ММНК) – с по-високо съдържание на наночастици, получени най-често посредством пресоване, синтезиране и други методи, при които не се преминава през напълно течно състояние, най-често на базата на Al, Mg и Cu [1]. Втора група - наномодифицирани метали, сплави и слоеве с по-ниско съдържание на наночастици и преминаване през течно състояние [2-6].

При първата група материали, в процеса на получаване често се използва термична обработка. За втората група, данни за влиянието на термичната обработка върху качествата на наномодифицирани стомани са публикувани относно инструментални стомани и стомана A106В [7, 8, 9].

Настоящата работа е част от изследване относно качествата на наварените слоеве получени при използване на електроди, съдържащи редица наномодификатори в обмазката си [10, 11]. Получените резултати показват по-дребнозърнеста структура, значительно повишаване на твърдостта и износостойчивостта на наварените слоеве[12]. Изследванията с електронен микроскоп с рентгенов анализатор (СЕМ – РМА), JSCXА 733 на фирмата JEOL установяваха наличието на частици, които съдържат наномодификатор [13].

Целта на настоящата работа е да установи:
- Изменението на твърдостта на наварения наномодифициран слой при отпряване в зависимост от концентрацията на използваната наномодификатор – SiC;
- Способността оттретия наварен наномодифициран метал да повиши твърдостта си отново при закаляване;
Зависимостта на твърдостта на наварения наномодифициран слой от концентрацията на вложените наномодификатор и вида на охлаждащата среда при закаляване.

2. ЕКСПЕРИМЕНТИ

Подготвени са образци с размери 10х10х6 mm от наварени пробни планки с номера № 1 – 5, съответстващи на наварени слоеве както следва:

- Образец № 1 – наварен с електрод E 300 без наномодификатор в обмазката
- Образец № 2 - наварен с електрод E 300 наномодифициран с A/8 % SiC
- Образец № 3 - наварен с електрод E 300 наномодифициран с A/4 % SiC
- Образец № 4 - наварен с електрод E 300 наномодифициран с A/2 %SiC
- Образец № 5 - наварен с електрод E 300 наномодифициран с A %SiC

Химичният състав на наварените слоеве е определен посредством спектрален анализ.

Извършено е измерване на твърдостта HV 15/15 в състояние след наваряне. За всички измервания на твърдостта е използван твърдомер Brinell Vickers тип HPO 250.

Образците за термообработка се разделят на две групи:

- Първата група се състои от по един образец от всяка проба маркирани с номер на пробата и точков индекс - една точка за конкретната партида на обработка за закаляване в масло.
- Втората група се състои от по един образец от всяка проба маркирани с номер на пробата и точков индекс - три точки за конкретната партида на обработка за закаляване във вода.

За да се съпоставят твърдостите на пробите след отгъзване с различен процент наномодификатор и за да се стартира следващото закаляване от едно и също изходно състояние на всички проби, образците от двете групи се подлагат на пълно отгъзване от температура 8700 С и охлаждане с пещта. След шлифоване за почистване на окисния слой е извършено измерване на твърдостта HV 15/15.

Съгласно диаграмата на Фиг. 1 за конкретният химичен състав на наварения слой (вертикалната линия в диаграмата на фазовото състояние) границата с аустенитната област е при температура около 8200 С.

Диаграмата на Фиг.2 показва необходимата скорост на охлаждане за конкретния химичен състав на наварения слой, при която може да се получи почти изцяло мартензитна структура. Скоростите на охлаждане за закаляване, които дават маслото и водата като охлаждащи среда са достатъчни за осигуряване на преход от аустенит към мартензит.
Фиг.1. Фазова диаграма за наварения метъл на базовия електрод марка Е-300

Фиг.2. С-криви за наварения метъл с базовия електрод марка Е 300

За да се гарантира пълно прогряване, образците са загрети до 870° С в продължение на 10 минути. Закаляването е проведено едновременно с нагряване на двете групи образци в две отделни кошнички едновременно Фиг 3, след което са закалени съответно във вода и масло. Отново е извършено почистване на повърхността и измерване на твърдостта HV 15/15.
3.РЕЗУЛΤАТИ
На Фиг. 4 са представени резултатите за твърдостта под формата на диаграма. В Таблиците от 1 до 4 се виждат и конкретните стойности от измерванията, осреднените стойности и процента на нарастване на твърдостта спрямо базовия образец.

Таблица 1 - Твърдост - HV 15/15 след наваряване

<table>
<thead>
<tr>
<th>№</th>
<th>Базова проба: Пр. Е300-1</th>
<th>SiC</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A/8</td>
<td>A/4</td>
<td>A/2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Пр.2</td>
<td>365</td>
<td>548</td>
<td>679</td>
<td>526</td>
<td>779</td>
</tr>
<tr>
<td>2</td>
<td>Пр.3</td>
<td>318</td>
<td>652</td>
<td>652</td>
<td>538</td>
<td>771</td>
</tr>
<tr>
<td>3</td>
<td>Пр.4</td>
<td>341</td>
<td>633</td>
<td>519</td>
<td>602</td>
<td>779</td>
</tr>
<tr>
<td>Средно</td>
<td></td>
<td>341,3</td>
<td>611,0</td>
<td>616,7</td>
<td>555,3</td>
<td>776,3</td>
</tr>
<tr>
<td>Ръст спрямо базовата проба</td>
<td>79,0%</td>
<td>80,7%</td>
<td>62,7%</td>
<td>127,4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2 - Твърдост - HV 15/15 след отгряване

<table>
<thead>
<tr>
<th>№</th>
<th>Базова проба: Пр. Е300-1</th>
<th>SiC - %</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A/8</td>
<td>A/4</td>
<td>A/2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Пр.2</td>
<td>230</td>
<td>285</td>
<td>311</td>
<td>301</td>
<td>285</td>
</tr>
<tr>
<td>2</td>
<td>Пр.3</td>
<td>252</td>
<td>285</td>
<td>311</td>
<td>305</td>
<td>287</td>
</tr>
<tr>
<td>3</td>
<td>Пр.4</td>
<td>243</td>
<td>262</td>
<td>293</td>
<td>305</td>
<td>262</td>
</tr>
<tr>
<td>Средно</td>
<td></td>
<td>241,7</td>
<td>277,3</td>
<td>305,0</td>
<td>303,7</td>
<td>278,0</td>
</tr>
<tr>
<td>Ръст спрямо базовата проба</td>
<td>14,8%</td>
<td>26,2%</td>
<td>25,7%</td>
<td>13,1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Табл. 3 - Твърдост - HV 15/15 след закаляване в масло

<table>
<thead>
<tr>
<th>№</th>
<th>Базова проба: Пр. Е300-1</th>
<th>Пр.2</th>
<th>Пр.3</th>
<th>Пр.4</th>
<th>Пр.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Твърдост HV15/15</td>
<td>A/8</td>
<td>A/4</td>
<td>A/2</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>kg/mm²</td>
<td>kg/mm²</td>
<td>kg/mm²</td>
<td>kg/mm²</td>
<td>kg/mm²</td>
</tr>
<tr>
<td>1</td>
<td>336,0</td>
<td>937,0</td>
<td>904,0</td>
<td>815,0</td>
<td>779,0</td>
</tr>
<tr>
<td>2</td>
<td>329,0</td>
<td>806,0</td>
<td>971,0</td>
<td>833,0</td>
<td>746,0</td>
</tr>
<tr>
<td>3</td>
<td>297,0</td>
<td>893,0</td>
<td>948,0</td>
<td>937,0</td>
<td>788,0</td>
</tr>
<tr>
<td>Средно</td>
<td>320,7</td>
<td>878,7</td>
<td>941,0</td>
<td>861,7</td>
<td>771,0</td>
</tr>
<tr>
<td>Ръст спрямо базовата проба</td>
<td>174,0%</td>
<td>193,5%</td>
<td>168,7%</td>
<td>140,4%</td>
<td></td>
</tr>
</tbody>
</table>

Табл. 4 Твърдост HV 15/15 след закаляване във вода

<table>
<thead>
<tr>
<th>№</th>
<th>Базова проба: Пр. Е300-1</th>
<th>Пр.2</th>
<th>Пр.3</th>
<th>Пр.4</th>
<th>Пр.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Твърдост HV15/15</td>
<td>A/8</td>
<td>A/4</td>
<td>A/2</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>kg/mm²</td>
<td>kg/mm²</td>
<td>kg/mm²</td>
<td>kg/mm²</td>
<td>kg/mm²</td>
</tr>
<tr>
<td>1</td>
<td>339</td>
<td>872</td>
<td>883</td>
<td>686</td>
<td>730</td>
</tr>
<tr>
<td>2</td>
<td>410</td>
<td>815</td>
<td>771</td>
<td>738</td>
<td>883</td>
</tr>
<tr>
<td>3</td>
<td>391</td>
<td>843</td>
<td>754</td>
<td>788</td>
<td>693</td>
</tr>
<tr>
<td>Средно</td>
<td>380</td>
<td>843,3</td>
<td>802,7</td>
<td>737,3</td>
<td>768,7</td>
</tr>
<tr>
<td>Ръст спрямо базовата проба</td>
<td>121,9%</td>
<td>111,2%</td>
<td>94,0%</td>
<td>102,3%</td>
<td></td>
</tr>
</tbody>
</table>

Твърдостта на наварения наномодифициран слой след наваряване, оттръзване и закаляване в масло и вода в зависимост от концентрацията на използваните наномодификатор – SiC е показана на Табл. 1 - 4.

Способността оттретия наварен наномодифициран метал да повиши твърдостта си отново при закаляване е доказана по безспорен начин.

Твърдостта на наварените наномодифицирани слоеве закалени във вода достигат до повишение 121,9% спрямо базовата проба, а твърдостта на наварените наномодифицирани слоеве закалени в охлаждаща среда масло показват повишение до 193,5% спрямо базовата проба.
Фиг. 5 Зависимост на твърдостта на наномодифицираните слоеве от концентрацията на модификатора в състояние след наваряване, от гряване и закаляване в масло и вода.

Таблица 5 - Твърдост - HV 15/15 при модифициране с SiC

<table>
<thead>
<tr>
<th>Съдържание</th>
<th>След навар</th>
<th>След отгр</th>
<th>Зак. вода</th>
<th>Зак. масло</th>
</tr>
</thead>
<tbody>
<tr>
<td>Базова проба</td>
<td>341,3</td>
<td>241,7</td>
<td>380</td>
<td>320,7</td>
</tr>
<tr>
<td>A/8 % SiC</td>
<td>611,0</td>
<td>277,3</td>
<td>843,3</td>
<td>878,7</td>
</tr>
<tr>
<td>A/4 % SiC</td>
<td>616,7</td>
<td>305,0</td>
<td>802,7</td>
<td>941,0</td>
</tr>
<tr>
<td>A/2 % SiC</td>
<td>555,3</td>
<td>303,7</td>
<td>737,3</td>
<td>861,7</td>
</tr>
<tr>
<td>A % SiC</td>
<td>776,3</td>
<td>278,0</td>
<td>768,7</td>
<td>771,0</td>
</tr>
</tbody>
</table>

4. ИЗВОДИ

1. Твърдостта на наномодифицираните със SiC наварени слоеве е по-висока от тази на базовият образец за всички изследвани концентрации и при всички състояния – след наваряване, след пълно отгряване и след закаляване в две охлаждащи среди.

2. При отгряване на наномодифицирани със SiC наварени слоеве при образците с A/4 и A/2 се наблюдава повишаване на твърдостта съответно с 26,2% и 25,7%.

3. Стойностите на твърдостта на наномодифицираните слоеве след закаляване в масло са по-високи от тези след закаляване във вода за разлика от наварените с базовия електрод Е 300 слоеве.

4. С увеличаване на процентното съдържание на наномодификатора SiC се достигат максимални стойности на твърдостта до съдържание A/2, след което се наблюдава спад (Фиг 5). Това показва наличие на пределна граница на съдържанието на наномодификатор, след която не се наблюдава нарастване на твърдостта.
5. Достигнатите стойности на твърдостта на наномодифицираните със SiC наварени слоеве са съизмерими с наварени слоеве получени при наваряване със скъпи, високолегирани електроди.

6. Прилагането на закаляване след наваряване на наномодифицирани слоеве със SiC води до допълнително увеличаване на твърдостта. Установени са ръст на твърдостта на наномодифицираните наварени слоеве след термообработка достигащ до 193.5 % спрямо базовия образец и стойности на твърдостта HV 15/15 над 900 kg/mm².

5. ЗАКЛЮЧЕНИЕ

Произведените наномодифицирани със SiC електроди за наваряване осигуряват по-висока твърдост на наварените слоеве.

На базата на получените резултати става възможна оптимизация на режима на наваряване за постигане на по-висока твърдост на наварените слоеве, като се вземат мерки за постигане на по-високи скорости на охлаждане на наварените слоеве в процеса на наваряване. Това може да се реализира посредством някоя от следните мерки, в зависимост от конкретния случай като се:
- увеличението между два последователни шева;
- използване на контакт с масивен елемент за топлоотнемане (най-често от мед или месинг);
- приложението принудително охлаждане с течност или обдухване с газ в близост до зоната на наваряване.

Представените изследвания създават възможности за значителен икономически ефект при прилагането на ново разработените електроди в практиката.

БЛАГОДАРНОСТИ

Авторът благодари на проф. Пламен Ташев, ръководител на Център по заваряване към ИМСТЦХ – БАН ”Акад. А. Балевски“ и проф. Румен Петров от катедра „Материалознание“ в университета в град Гент, Белгия за предоставените ценни съвети и препоръки.