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Abstract: In this paper we investigate the dynamical behavior of an angular rate 

sensor model when the unsymmetrical nonlinear restoring force is included. Our analytical 
calculations predict that angular velocity (directed along axis z) acts as a key parameter and 
the equilibrium states of the system can only lose their stability. This is confirmed by 
numerical simulations. 

 
1. INTRODUCTION 
 The study of instabilities plays a central role in the modern theory of dynamical 
systems In other words, we are interested in the qualitative changes in the dynamics at a 
change in the parameter values. The most simple and best studied case is the bifurcation of the 
equilibrium state in the presence of one parameter [1-3]. More complex bifurcations are 
described (examined) in the theory of bifurcations: bifurcation of the equilibrium state in the 
presence of more than one parameter in the system; bifurcation of periodic motion; 
relationship between the equilibrium and / or limit cycles; bifurcations of the more complex 
basis sets. 
 The gyroscope has a wide spectrum of applications in automotive, space engineering, 
military and aeronautical industry, medicine and so on. For these reasons, many research 
groups in Europe, USA and Asia have been investigating gyro architectures and technologies 
[4]. In recent years, the gyro (which measures angular rotation around a fixed axis with 
respect to an inertial space) is a key sensor in modern navigation systems [5]. 
 Gyroscopic forces have two useful perspectives in the dynamics of mechanical 
systems: (i) they create coupling between different degrees of freedom, just like mechanical 
couplings; (ii) they rotate the velocity vector just like magnetic field acting on a charged 
particle. Note that gyroscopic forces are very useful in the stabilization of dynamical systems, 
because they are non-potential forces with zero power [4]. 
 It is well-known that the operating principle of all vibrating gyros is based on the 

effect of Coriolis force CF


 on a vibrating mass [5, 6]. In Figure 1, a simple model of vibrating 

angular rate sensor (as a two degree of freedom spring-mass-damper system) is shown 
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Figure 1. A simple model of vibrating angular rate sensor. 
 
where m  is the mass of the rotating reference frame,   is the angular velocity (directed along 
axis z ) of the reference frame, xk  and yk  are the damping coefficients along x  and y  axes, 

xc  and yc  are the spring constants along x  and y  axes and xF  is the excited force along axis 

x . According to [5, 6], such gyroscopes are frequently refered to as MEMS (Micro-Electro-
Mechanical-Systems) gyroscopes. The Coriolis force (exercised) by a mass m  moving in a 
rotating reference frame (see Fig. 1) is equal to 
 

(1)      ,2 


 vmFC  
 

where v


 is the mass velocity in the rotating reference frame. Usually, the effect of the 
Coriolis force can be defined from dynamic equations describing the motion of the system 
shown in Figure 1. According to [5], the motion equations can be written in the form 
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Here we note that the primary oscillating mode is excited when xF  is a harmonic (sinusoidal) 

force. 
 Most oscillating mechanical systems are not exactly linear but are approximately 
linear when the oscillations amplitude is small. In the case of a body on a spring, the restoring 
force RF  might actually have the form 
 

(3)     3xCxFR  , 
 

which is approximated by the linear formula CxFR   - when the displacement x  is small. 
The constant   is a measure of the strength of the nonlinear effect. It is well-known that if 

0 , then RF  is less than its linear approximation and the spring is said to be softening as x  
increases. Conversely, if 0 , then the spring is hardening as x  is increases. The formula 
(3) is typical of nonlinear restoring forces that are symmetrical about 0x . If the restoring 
force is unsymmetrical about 0x , the leading correction to the linear case will be a term in 

2x , i.e. 
 

(4)     2BxCxFR  . 
 

where   1,  yx ccC  and   1,  yxB   are matrices. 
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 Since an important performance parameter for a vibratory gyroscope is its zero rate 
output or zero bias, in this paper we assume that 0 xyx Fkk  and RF  has the form (4). 

Thus, the system (2) in normal form can be written as 
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where 
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and 
 

(7)    yyyyxyxy   4321 ,,, . 

Here we note that system (5) is a particular case of the general nonlinear system with two 
degrees of freedom (considered by us in [4]), where it is assumed that the forces in the right-
hand sides are nonlinear from second order. 

The paper is organized as follows: in Section 2 and 3 we present analytical and numerical 
results concerning the system (5) behavior. In Section 4 we discuss and summarize our 
results. 

 
2. QUALITATIVE ANALYSIS 
 The steady (fixed points in the phase space) states of the system (5), 

 4321 ,,, yyyyE  , are found by equating the right-hand sides of (5) to zero. Thus, according 

to [4] they can be analytically estimated and are defined by the following set of algebraic 
equations, including the constants of the model: 
 

(8)   

         

         

         

          .0,:

,,0:

,0,,:

,0:

4

4

4

3

4

2

3

14

1

4

5

43

3

3

4

3

2

3

1

3

2

4

2

2

5

42

3

3

12

1

2

1

4

1

3

1

2

1

1

1









yyy
a

a
yF

a

a
yyyyF

yy
a

a
y

a

a
yF

yyyyF

p

p

p

p

 

 

In this paper we are interested in the behavior of the system (5) for fixed points  1

pF  to  4

pF . 

For these four fixed points, the divergence of the flow (5) is 
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i.e. the system (5) is a nonlinear conservative one. 
 The characteristic equation for fixed points  1

pF  to  4

pF  has the form: 
 

(10)    .024  sq  
 



VII-20 

The equation (10) is biquadratic and can be solved exactly, i.e. 
 

(11)     ,4
2

1 22 Dmcc
m yx    
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  and D  is the discriminant.  

 A necessary and sufficient condition for all 2 s to be real is that the discriminant D  
into (11) is nonnegative 
 

(12)        028 222   mccmccD yxyx . 
 

Note, that the real 2 s are all nonpositive if and only if 
 

(13)     .0,0  sq  
 

Inequalities (12) and (13) form a criterion for the eigenvalues   to be purely imaginary, i.e. 
in , where 0n  is real (spectral) stability. This is however only a necessary condition 

for all solutions (of the linear form of (5)) to be bounded and thus to be marginally (linearly) 
stable [7]. According to [4, 8], here the second critical case is valid and the equilibrium states 

 1

pF  to  4

pF  can only lose their stability. 

 
3. NUMERICAL ANALYSIS 
 The values chosen for the parameters and used in the numerical analysis are: 
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 The dependence of the system’s behavior (stable or unstable) on   is shown in Figs. 2 
and 3. We fix the model parameters (see (14)) and vary  . It is seen that for smaller values of 
the angular velocity   (i.e. 10 ) the system (5) has unstable solutions. These results are in 
accordance with the analytical results obtained in previous Section 2. 
In addition, with increasing angular velocity, the magnitude of the real eigenvalues becomes 
smaller until they collide at the origin and form a zero eigenvalue of the algebraic multiplicity 
2. 

     
continue 
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Figure 2. Unstable solutions and phase space of system (5) for m=0.2, cx=200, cy=150, 
                                                    βx=20, βy=15 and ω=10 when y1(0)=y3(0)=0, y2(0)=y4(0)=0.1. 
 

If   grows further, the double eigenvalue splits into two purely imaginary eigenvalues - 
algebraic multiplicity 1 (i.e. simple) takes place and the equilibrium is marginally stable. 
 

     

     
 

Figure 3. Stable solutions and phase space of system (5) for m=0.2, cx=200, cy=150 
                                βx=20, βy=15 and ω=100 when y1(0)=y3(0)=0, y2(0)=y4(0)=0.1.  

 
4. CONCLUSION 
 The paper presents a study of the dynamical behavior of an angular rate sensor model, 
using analytical and numerical tools. Considering the case of an unsymmetrical nonlinear 
restoring force we obtain a particular case of the general nonlinear system with two degrees of 
freedom (considered by us in [4]), where it is assumed that the forces in the right-hand sides 
are nonlinear from second order. In Section 2 we find: 1) the necessary condition for all 
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solutions of system (5) to be bounded and therefore to be marginally (linearly) stable as 
function of angular velocity   and 2) that the equilibrium states  1

pF  to  4

pF  of system (5) 

can only lose their stability. In Section 3, we check the validity of our analytical results with 
numerical examples. Generalizing our results in Section 2 and 3, we conclude that angular 
velocity   acts as a key parameter in the dynamical behavior of system (5). 
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Ключови думи: нелинейна динамика, МЕМС жироскопи, качествен и числен 
анализ 

Резюме: В тази статия изследваме динамичното поведение на един модел на 
ъглово скоростен сензор, когато е включена несиметрична нелинейна възстановяваща 
сила. Аналитичните ни пресмятания предсказват, че ъгловата скорост около ос z  
действа като ключов параметър, а равновесните състояния на системата могат 
само да губят своята устойчивост. Това се потвърждава от числените симулации. 

 


