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Abstract: In this paper we investigate the dynamical behavior of an angular rate
sensor model when the unsymmetrical nonlinear restoring force is included. Our analytical
calculations predict that angular velocity (directed along axis z) acts as a key parameter and
the equilibrium states of the system can only lose their stability. This is confirmed by
numerical simulations.

1. INTRODUCTION

The study of instabilities plays a central role in the modern theory of dynamical
systems In other words, we are interested in the qualitative changes in the dynamics at a
change in the parameter values. The most simple and best studied case is the bifurcation of the
equilibrium state in the presence of one parameter [1-3]. More complex bifurcations are
described (examined) in the theory of bifurcations: bifurcation of the equilibrium state in the
presence of more than one parameter in the system; bifurcation of periodic motion;
relationship between the equilibrium and / or limit cycles; bifurcations of the more complex
basis sets.

The gyroscope has a wide spectrum of applications in automotive, space engineering,
military and aeronautical industry, medicine and so on. For these reasons, many research
groups in Europe, USA and Asia have been investigating gyro architectures and technologies
[4]. In recent years, the gyro (which measures angular rotation around a fixed axis with
respect to an inertial space) is a key sensor in modern navigation systems [5].

Gyroscopic forces have two useful perspectives in the dynamics of mechanical
systems: (i) they create coupling between different degrees of freedom, just like mechanical
couplings; (ii) they rotate the velocity vector just like magnetic field acting on a charged
particle. Note that gyroscopic forces are very useful in the stabilization of dynamical systems,
because they are non-potential forces with zero power [4].

It is well-known that the operating principle of all vibrating gyros is based on the

effect of Coriolis force F. on a vibrating mass [5, 6]. In Figure 1, a simple model of vibrating
angular rate sensor (as a two degree of freedom spring-mass-damper system) is shown
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Figure 1. A simple model of vibrating angular rate sensor.

where m is the mass of the rotating reference frame, @ is the angular velocity (directed along
axis z) of the reference frame, k, and k, are the damping coefficients along x and y axes,

c, and ¢, are the spring constants along x and y axes and F, is the excited force along axis

x . According to [5, 6], such gyroscopes are frequently refered to as MEMS (Micro-Electro-
Mechanical-Systems) gyroscopes. The Coriolis force (exercised) by a mass m moving in a
rotating reference frame (see Fig. 1) is equal to

(1) E.=2m(v x &),

where v is the mass velocity in the rotating reference frame. Usually, the effect of the
Coriolis force can be defined from dynamic equations describing the motion of the system
shown in Figure 1. According to [5], the motion equations can be written in the form

mx+kx+cx—2omy=F_,

) L .
my+k,y+cy+2omx=0.
Here we note that the primary oscillating mode is excited when F. is a harmonic (sinusoidal)

force.

Most oscillating mechanical systems are not exactly linear but are approximately
linear when the oscillations amplitude is small. In the case of a body on a spring, the restoring
force F, might actually have the form

3) F,=Cx+Ax’,

which is approximated by the linear formula F, = Cx - when the displacement x is small.
The constant A is a measure of the strength of the nonlinear effect. It is well-known that if
A <0, then F, is less than its linear approximation and the spring is said to be softening as x

increases. Conversely, if A >0, then the spring is hardening as x is increases. The formula
(3) is typical of nonlinear restoring forces that are symmetrical about x =0. If the restoring
force is unsymmetrical about x =0, the leading correction to the linear case will be a term in
X, i.e.

4) F,=Cx+ Bx".

where C=|c,c,]" and B=[g,B,]" are matrices.
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Since an important performance parameter for a vibratory gyroscope is its zero rate
output or zero bias, in this paper we assume that k, =k =F ~0 and F, has the form (4).

Thus, the system (2) in normal form can be written as

Y=Y
(5) Vy = —ay, + a4y, —ay;,

ys =V

Ve =—a,), — a4, —asygz,
where

C
(6) al — Cx , a2 — 2a) , a3 — ﬂx , a4 — ’ as _ IBy ’
m m m "

and
(7) y1=x , yzzx , yg:y , y4=y_

Here we note that system (5) is a particular case of the general nonlinear system with two
degrees of freedom (considered by us in [4]), where it is assumed that the forces in the right-
hand sides are nonlinear from second order.

The paper is organized as follows: in Section 2 and 3 we present analytical and numerical
results concerning the system (5) behavior. In Section 4 we discuss and summarize our
results.

2. QUALITATIVE ANALYSIS

The steady (fixed points in the phase space) states of the system (5),
E=(%,7,.7,.7,), are found by equating the right-hand sides of (5) to zero. Thus, according
to [4] they can be analytically estimated and are defined by the following set of algebraic
equations, including the constants of the model:
F(l) : yl(l) — yél) — y(l) — )—}(1) =0,

3 4

— a,  _ a, _ —
RO = 302G 5050 g

a3 a5
(8) ) _ a
FO iy =y =32 =0,5) =—=,
a5
_ a . _ .
FY = - w=p=3"=0
3

In this paper we are interested in the behavior of the system (5) for fixed points F[f” to Fp(“).
For these four fixed points, the divergence of the flow (5) is

9 D4:%+%+%+%=O
ayl 6)/2 @/3 @}4

i.e. the system (5) is a nonlinear conservative one.
The characteristic equation for fixed points £ to F has the form:

(10) 2 +qrt+s=0.
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The equation (10) is biquadratic and can be solved exactly, i.e.
2 1 2
(11) 4 :2—(cx+cy+4ma) i\/D),
m

1 1 . o
where g =a, +a, +a; = —(cx +c, + 4ma)2), s =a,a, =—c.c, and D is the discriminant.
m ’ m* "

A necessary and sufficient condition for all »*s to be real is that the discriminant D
into (11) is nonnegative

(12) Dz(cx—cy)Z +8ma)2(cx +cy+2ma)2)20.
Note, that the real s are all nonpositive if and only if
(13) g=>20 , s>0.

Inequalities (12) and (13) form a criterion for the eigenvalues y to be purely imaginary, i.e.
x =tin, where n>0 is real (spectral) stability. This is however only a necessary condition
for all solutions (of the linear form of (5)) to be bounded and thus to be marginally (linearly)
stable [7]. According to [4, 8], here the second critical case is valid and the equilibrium states
F" to F'¥ can only lose their stability.

3. NUMERICAL ANALYSIS
The values chosen for the parameters and used in the numerical analysis are:

m=02[kg] cX=ZOOl%J , cy=150[%J,

(14) 1
.= 20[%2] . B =15 [Nm] . we[10,100]s]

The dependence of the system’s behavior (stable or unstable) on @ is shown in Figs. 2
and 3. We fix the model parameters (see (14)) and vary . It is seen that for smaller values of
the angular velocity o (i.e. @ =10) the system (5) has unstable solutions. These results are in
accordance with the analytical results obtained in previous Section 2.

In addition, with increasing angular velocity, the magnitude of the real eigenvalues becomes
smaller until they collide at the origin and form a zero eigenvalue of the algebraic multiplicity
2.
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Figure 2. Unstable solutions and phase space of system (5) for m=0.2, ¢,=200, ¢,=150,
B=20, B,=15 and w=10 when y;(0)=y3(0)=0, y>(0)=y4(0)=0.1.

If o grows further, the double eigenvalue splits into two purely imaginary eigenvalues -
algebraic multiplicity 1 (i.e. simple) takes place and the equilibrium is marginally stable.
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Figure 3. Stable solutions and phase space of system (5) for m=0.2, ¢,=200, ¢,=150
P=20, p,=15 and =100 when y,(0)=y;(0)=0, y>(0)=y40)=0.1.

4. CONCLUSION

The paper presents a study of the dynamical behavior of an angular rate sensor model,
using analytical and numerical tools. Considering the case of an unsymmetrical nonlinear
restoring force we obtain a particular case of the general nonlinear system with two degrees of
freedom (considered by us in [4]), where it is assumed that the forces in the right-hand sides
are nonlinear from second order. In Section 2 we find: 1) the necessary condition for all
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solutions of system (5) to be bounded and therefore to be marginally (linearly) stable as
function of angular velocity @ and 2) that the equilibrium states Fp(l’ to Fp(“) of system (5)

can only lose their stability. In Section 3, we check the validity of our analytical results with
numerical examples. Generalizing our results in Section 2 and 3, we conclude that angular
velocity @ acts as a key parameter in the dynamical behavior of system (5).
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Knrwouoeu oymu: menuneiina ounamuxa, MEMC ocupockonu, xauecmeeHn u YucieH
aHanus

Pesrome: B maszu cmamus uzcieosame OUHAMUYHOMO NogedeHue Ha eOuH Mooel Hd
21080 CKOPOCMEH CEH30p, KO2amo e 8KIUeHd HeCUMEMPUYHA HeTUHElHA 8b3CMAH08A68AA
cuna. Ananumuunume Hu NPecCMAMAHUA NPeOCKa38am, ye velosama CKOpOCm OKONO OC Z
delicmea Kamo K408 napamemuvp, d pPAGHOBECHUME CbCMOSAHUS HA CUCeMAama Mo2am
camo oa 2ybsam ceosma ycmotyugocm. Tosa ce nomsvpixicoasa om ducieHume CUMYIayuu.

VII-22



