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Abstract. We classify hypersurfaces M™ of manifolds of constant nonzero sectional
curvature according their restricted homogeneous holonomy groups. It turns out that outside
of the evident cases (restricted holonomy group SO(n) and flat submanifolds) only two cases
arise: restricted holonomy group SO(k) X SO(n — k) (when M™ is locally a product of two
space forms) and SO(n — 1) (when M™ is locally a product of an (n — 1) -dimensional space
form and a segment).

1. Introduction.

The holonomy groups are fundamental analytical objects in the theory of manifolds
and especially in the theory of Riemannian manifolds. The holonomy group of a Riemannian
manifold reflects for example on local reducibility of the manifold. In [6] M. Kurita classifies
the conformally flat Riemannian manifolds according their restricted homogeneous holonomy
group.

There exists a similarity between the conformal flat Riemannian manifolds and the
hypersurfaces of a Riemannian manifold, see e.g. the remark of R. S. Kulkarni in [5]. So it is
natural to look for a result in the submanifold geometry, analogous to the Kurita's theorem. In
[3] S. Kobayashi proves that the holonomy group of a compact hypersurface of E™*1 is
S0(n). Generalizations of Kobayashi's result are obtained by R. Bishop [1] and G. Vranceanu
[8].

In this paper we consider analogous question for hypersurfaces of non-flat real space
forms according their holonomy groups. Namely we prove:

Theorem 1. Let M™ (n > 3) be a connected hypersurface of a space M™'(v) of
constant positive sectional curvature v. Then the restricted homogeneous holonomy group H,,
of M™ in any point p is in general the special orthogonal group SO(n). If H, is not SO(n)
at any point p € M™ , then one of the following cases appears:

a) Hy =S0(k) X SO(n —k),1 <k <n-—1and M" is locally a product of a k-
dimensional space of constant sectional curvature v + A% and an (n — k) — dimensional
space of constant sectional curvature v + u?, with v+ Au =0 ;

b) Hy, = SO(n — 1) and M™ is locally a product of an (n — 1)-dimensional space of
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constant sectional curvature and a segment.
A similar theorem for complex manifolds is proved in [7].

2. Preliminaries.

Let M™' be an (n+ 1)-dimensional Riemannian manifold with metric tensor g
and denote by V its Riemannian connection. It is well known that if M™*! is of constant
sectional curvature v , then its curvature operator R has the form

R(x, ) =vxAy
where the operator A is defined by
xANy =gy 2)x—gx2)y. N

Such a manifold is denoted by M™*1(v). Now let M™ be a hypersurface of M"*1(v)

and denote by V its Riemannian connection. Then we have the Gauss formula

VY =V + o(X,Y)
for vector fields X,Y on M™, where o is a normal-bundle-valued symmetric tensor field on
M™, called the second fundamental form of M™ in M™*'. Let & be a unit normal vector
field. Then the Weingarten formula is
V€ = —AgX
and the operator A; is related to o by
90X, Y),8) = g(AeX,Y) = g(4¢Y,X).
Suppose that we have fixed a normal vector field & . Then we shall write 4 insteed of
Ag. The equations of Gauss and Codazzi are given respectively by
R(X,Y) =vXAY+AX NAY,
(VXA)Y = (VYA)X ,
R denoting the curvature operator of M™.

It is known that Lie algebra of the infinitesimal holonomy group at a point p of a

Riemannian manifold M is generated by all endomorphisms of the form

VER)YX,Y; V4, o, Vi),
where X,Y,V,, .., Vi€ T,M and 0 <k < 4o [4] . Moreover if the dimension of the
infinitesimal holonomy group is constant, this group coincides with the restricted
homogeneous holonomy group [4].

3. Proof of Theorem 1.

Let p be an arbitrary point of M™. We choose an orthonormal basis ey, ..., e, of
T,M , which diagonalize the symmetric operator 4, i.e.

Aei = Aiei i = 1, e, L
Then by the equation of Gauss we obtain
(31) R(ei, e]) = (V + /L'Aj)ei A\ € .
First we note that M™ cannot be flat at p . Indeed if M™" is flat, we obtain from (3.1)
v+ A4 =0 forall i#j.Since n>2 this implies easily v + A{ = 0, and because of
v > 0 this is a contradiction.

Since M™ is not flat at p, there exist i # j, such that v + 4;4; # 0. Then (3.1)
implies that e; A e; belongs to the Lie algebra hy, of H,. As in [6] we denote by SO[iy, ..., i) ]
the subgroup of SO(n) , which induces the full rotation of the linear subspace, generated by
ei,, -, €, and fixes the remaining vectors. Denote also by so[iy, ..., ix] the Lie algebra of
SO[iy, ..., i] . Then according to the above argument H,, contains SO[i, /] .

If H, contains SO(n), then H, =S0(n), because the restricted homogeneous
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holonomy group H, of a Riemannian manifold is a subgroup of SO(n), see [2].

Let Hy, is not SO(n) . Then there exist k, 2 < k <n — 1 and indices iy, ..., i , such
that H,, contains SO[iy, ..., ix] but doesn't contain SO[iy, ..., i, u] for u # iy, ..., i, . Without
loss of generality we can assume that H, contains SO[1,...,k], but does not contain
SO[1, ..., k,u] for u>k.

Let us suppose that h,, contains so[a,u] for some ae{1,...,k} and ue{k +1,...,n}.
Since

[ep Neg,eq Ney ] =e, Aey
it follows that the Lie algebra hp contains e, Ae, for b=I,...,k . Hence hp contains
so[l,....k,u] , which is a contradiction.

Consequently hp doesn't contain so[a,u] for any a=1,...,k; u=k+1,....n . Then (3.1)
implies

(3.2) v+A,4,=0 a=1,...,.k;u=k+1,..,n

Hence, using v # 0, we obtain A, =+ =71, and Ay,; =:-=41, . Denote A =1;; 0 =
Ak+1- Then by 3.2) v+20 =0, 1 # 0, 6 # 0 and it follows easily 1 # 6, v+ 1> #0,
v+02#£0.

In a neighborhood W of p we consider continuous functions Ay, ..., Ay, such that for
any point ¢ in W the numbers A;(q), ..., A,(q) are the eigenvalues of 4. Since v + A% # 0,
v+ 602 # 0, then in an open subset ¥ of W containing p we have

v+ A (@A, (@) #0 ab=1,..k;

v+ A, (@A, (@) #0 uwuv=k+1,..,n.
Hence H, contains SO/I,....k] and SO[k+1,...,n]. Suppose that v + A,(q)A,(q) # 0 for
some a=1,....,k; u=k+1,...,n . Then hq contains e, A e, so as before hq contains so/f1,...,k,u/
and analogously h, contains so/n/ , which is not possible. So v + A,(q)A,(q) = 0 . Hence
as before we find

A1(q) = - = M(@), Apaa(q) = = Ar(q) .
Consequently in a neighborhood V' of p there exist a number k& and continuous

functions A(q) , ®(q) such that A(q) # ©@(q) and

(3.3) (@ ==h(@ =4 #0, (@) =—=4,(q)=06(q) #0

for geV . Since M™ is connected, k is a constant on M™. Consequently (3.3) holds on M™ .
On the other hand using v + A@® = 0 and the fact that kA + (n — k)@ =tr 4 is smooth we
conclude that A and ® are smooth functions on M™. Define two distributions

T,(q) = {xeT,(M) : Ax = A(q)x },
T,(q) = {xeTq(M) : Ax = 0(q)x }
It follows directly that T; and T, are orthogonal and for X,YeT;, Z, UeT, we have
RIX,Y)=({Ww+A>)XAY,
v
R(Z,U) = F(v +A2)Z AU,
R(X,Z)=0.
We choose local orthonormal frame fields {Ej, ..., Eyx} of T; and {Ej,q, ..., Ep} of T, and we
denote

n
VEiEj = Z I—ijSES .
s=1
Then [;js = —I}; forall i,j,s=1,...,n, in particular I;;; = 0. As before let a, b, c e{1, ..., k}
and u,v e{k + 1, ...,n}. From the second Bianchi identity we have
(VaR)(Eb' Eu) + (VbR)(Eu' Ea) + (VuR)(Ea; Eb) =0
and hence
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k
Eu(Az)Ea A Eb + (V + Az) Z{Fbuc Ea A Ec - Fauch A Ec}

c=1

n
v
+(V + AZ) Z {F (Fabv - Fbav)Eu A Ev + Fuava A Eb - Fuvav A Ea} =0.
v=k+1
Consequently we obtain
(3.4) Eu(AZ) =W+ AZ){Faau + I—inu} ’
(v+A43)r,,, =0

forall a # b. Since v + A% # 0 we find I;,,,, = 0, so T, is parallel.

Let n—k = 2 . Then analogously to the above T; is also parallel. Now (3.4) implies
that A doesn't depend on E,, and analogously ® doesn't depend on E,. Hence, using v +
A® = 0 we conclude that A and ® are constants. So we obtain the case a) of our Theorem.

Let n — k = 1. We shall show that under the assumption H,, # SO(n) the distribution

T, is again parallel. By the Codazzi equation we have
(VaA)(Ep) = (VoA)(Eq) .

Ea(A)Eb + (A - @)FabnEn = Eb(A)Ea + (A - O)I—banEn .
Hence E,(A) = 0 for a=1,...,n-1. Now from
(Vo A)(ER) = (VR A)(ER)
n-—1

E,(A)E, + (A — 0) z r..E, =0,

c=1

This implies
we obtain

Hence we derive
(3.5) En(A) = (A= 0)an,
A-O),=0 forc+a.

Since A# @ the last equality implies I,., = 0 for a # c . On the other hand (3.5) implies
lyan = Topn - If T qn = 0, then Ty is parallel and from (3.5) E,(A) =0, so A is a constant.
Because of v + A0 # 0 it follows that ® is a constant too. Hence we obtain the case b) of
our Theorem. Let us suppose that I ,,,, # 0. We compute directly

(VaR)(Eg, Ep) = (v + AZ)FaanEn NEp .
Hence E, A Epeh, and as before it follows that SO (n) = H,, which is not our case. This
proves Theorem 1.

Remark. In the same way we can consider the case where M™*1(v) is of constant negative
sectional curvature v . Then we obtain

Theorem 2. Let M™ (n > 3) be a connected hypersurface of a space M™(v) of
constant negative sectional curvature v. Then the restricted homogeneous holonomy group
H, of M™in any point p is in general the special orthogonal group SO(n). If H, is not
S0(n) at any point p € M™, then one of the following cases appears:

a) H, = S0(k) X SO(n—k),1 <k <n-—1and M" is locally a product of a k-
dimensional space of constant sectional curvature v + 2> and an (n — k) — dimensional
space of constant sectional curvature v + w2 with v+ Au=0;

b) Hy, = SO(n — 1) and M™ is locally a product of an (n — 1)-dimensional space of
constant sectional curvature and a segment.
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BBPXY I'PYITIATA HA XOJIOHOMUSA HA XUITEPITIOBbPXHUHU
HA ITPOCTPAHCTBA C IIOCTOSAHHA KPUBUHA

Ornsin Kaca6os
okassabov(@vtu.bg

BTY” Tooop Kabnewkos”, kam. ,Mamemamuxa u ungpopmamura”
Cogusa 1574, yna. ,,’'eo Munes” 158
BBIITAPUA

Knrouosu dymu: npocmpancmea ¢ nocmosiHna Kpusund, XunepnogypxHunu, epynd Ha
XONOHOMUSL.

Pestome. B mazu cmamus npasum kracugurkayus na xunepnosvpxuunume M™ na
NPOCMPAaHcmea ¢ NOCMOAHHA HEHYNe6d CeKYUOHHA KPUBUHA CHOpeO MeXHUme CMeCHeHu
XOMO2eHHU 2PYNU HA XON0OHOMUS. JJokazeame, ue 0C8eH 0ueUOHUme Ciydau (CmechHena 2pyna
na xononomus SO(N) u naocku noOMHO2006pa3Us) ce NOABAEAM Camo 06a CIyYAs: CIMECHEHA
epyna na xononomusi SO(k) X SO(n — k) (kocamo M™ nokanno e npoussedenue Ha 08e
npocmpancmeenu gopmu) u SO(n — 1) (koeamo M™ noxanno e npouszéeoenue na (n — 1) —
MepHa NRPOCMPAHCMEEHA POPMA U TUHUS).
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