

XVII INTERNATIONAL SCIENTIFIC CONFERENCE “TRANSPORT 2007”

VIII-1

MONITORING PRESENCE, USABILITY, AND RESPONSE TIMES OF

THE DIFFERENT HOST WORKSTATIONS ON LAN OR WAN
NETWORKS USING CROSS – PLATFORM, OPEN SOURCE ICMP

INTERFACE LIBRARY

Goran VUJAČIĆ, Ljubomir LUKIĆ
goran.vujacic@vzs.edu.yu,

Mr, Goran Vujačić, Beograd, Railway College of Vocational Belgrade,Serbia,

PhD, Ljubomir Lukić, Beograd, Mechanical facyliti Kraljevo,
SERBIA

Abstract: Nowadays, when computer networks are growing in their organization and

infrastructure complexity, it is essential to monitor presence, network characteristics, usability and
data transfers between different network hardware, network servers and end user workstations, all in
favor of speed, quality and finally, business.

Key words: ICMP, cross-platform, networking, library, lightping library

1. INTRODUCTION

Client – server revolution has brought many
advantages and innovations; mainly it has become
the epicenter and backbone of the entire network
facility and also the standards implementer. There
are many software products present on the market
today, starting from the network simulators to the
IRC or chat programs, mail clients, private intranet
chat servers and various dedicated software
applications. In this, so called “jungle” of software,
not just server administrators, but more often, users
need to know if there are remote hosts present on
the network. Users want their software to be easy to
use, with friendly interface and simple help files;
they want software to be fast, attractive and easy to
use. On the other side, server administrators want to
have more control; they do not care much about the
user interface, they want to tune their software to
their needs and personal taste; furthermore, they
want their software to be extendable, scriptable or
based on the plug-in architecture.

So what can one computer scientists or
engineer do to help?

There are many demands: portability, interface,
modularity, plug-in architecture, easiness of use,
and finally budget. Open source is the philosophy
which is used in this solution; it fulfils most of the

demands of this enigma. Pretty modest IT budget
and the quality of open source solutions of the large
specter, force the software designer to see the big
picture. The solution presented here follows the
GNU philosophy and standards of the open source
community. The entire C – GLIBC – Console –
GNOME – KDE – Windows™ framework is based
on this idea and RFC documents, providing the
simple, yet powerful solution to the presented
problems and demands. In this solution we are
going to present the most significant parts of
software, concerning advantages and disadvantages
between architectures, software implementations
and platform differences.
2. IMPLEMENTATION

Main programming language used in this project
is C, both on Windows™ and Linux platforms. C is
very powerful, low level language able to access
raw operating system functions, which is especially
important on the Linux platform. The core of the
software is dynamic (shared) library, written
entirely in C and based on the ip-utils package (on
Linux) from Mike Muss (US Army ballistics
laboratory) and the Berkley University in the
United States of America. This package offers
many useful utilities, among which the ping
program is of the most interest. This program is

Mechanics ISSN 1312-3823

Transport issue 3, 2007

Communications article № 0177

Academic journal http://www.mtc-aj.com

XVII INTERNATIONAL SCIENTIFIC CONFERENCE “TRANSPORT 2007”

Linux console program which does the “standard”
pinging and is invoked from the shell with `ping
<options> <hostname | IP address>`. The ping
utility is useful program and is used very often by
network administrators; it can also be useful in shell
scripts and pipes. And … that’s almost all of its
possibilities. This program completely implements
the ICMP protocol and uses checksum functions
that calculate IP packet data and headers length,
defined in RFC 793 and 1791. It was released in the
early ‘80s and it can run on every Linux platform I
had opportunity to work with. Windows™ solution
is based on the Icmp* functions API provided by
Microsoft and with Icmp.h and Icmp.lib files. These
functions are IcmpCreateFile, IcmpSendEcho and
IcmpCloseHandle. These functions are wrapped in
the iphlpapi.dll and icmp.dll dynamic link libraries.
This solution provides another library which even
more simplifies the usage and implementation. I’ve
mentioned that the entire library is written in ANSI
C on both platforms. That is the key to the power of
this library. I’ve wrapped all the low level details in
bunch of simple to use library calls including the
power and the speed of the C language.

On the Linux platform this library is compiled

with the GCC (GNU C Compiler) which offers
superior optimization and minimum possible file
size. On the Windows™ platform I’ve tried the
Microsoft Native C/C++ compiler and the
Bloodshed Dev C++ which is based on the
Mingw project. Microsoft’s products offers more
possibilities and platform integration, but the file
size of Dev C++ is much smaller (as twice as
small, without the shared linking). Even though,
I’ve noticed that the Microsoft’s compiler has
produced more stable and less memory
demanding code, so I’ve decided to use it (file
size does not matter that much these days: 6kb
with the Dev C++ and about 10k with the
Microsoft’s C/C++ compiler) . The source code
implementations mentioned above differ very
much. It was “easy” on the Windows platform:
wrap Icmp functions, write a few checksums and
thread handlers (because we did not want to
block the calling process), and that was almost all
about that. On the Linux platform things were
different. We had to use RAW sockets, realize
and/or implement entire ICMP protocol in our
program, realize the standard procedures, parse
replies, decode errors, preserve the buffers, install
the filter(s) on the socket …

Functional differences forced implementing
custom functions (which were primarily needed
on Linux) and centralized flow handlers. Based

on mentioned Icmp* Windows™ functions I’ve
implemented icmp_init, icmp_send_echo_echo,
and icmp_get_last_error functions in the library.
They behave almost like the Microsoft’s
functions, which was their main purpose. You
can see the entire source code in the Appendix.
With this functions in a shared library began the
GUI part of the problem.

 2.a Windows implementation
On Windows™, Borland Delphi having the

reputation of the best RAD tool (which is true), was
used to create the GUI. Delphi uses Object Pascal
as its base and very powerful VCL framework.

Fig. 1. Delphi interface

Fig. 2. GNOME Interface
There were no major problems with creating

and realizing the GUI (minor problems occurred
with callback functions and redefining C
structures and types). You can see the Delphi
interface below. Few clicks and lines of source
were just enough. Every network administrator
could have done this, with the language of his
choice (or even a script), because he would have
the library. Program was tested on the Windows
2000 and Windows XP and worked very stable.
Its file size was a little larger, (because of the
VCL) but it was compressed with UPX.The
situation was much more complicated on Linux.
First of all there are several window managers.
Most popular managers nowadays are GNOME
and KDE so I’ve decided to write interfaces for

 VIII-2

XVII INTERNATIONAL SCIENTIFIC CONFERENCE “TRANSPORT 2007”

both of them, and, of course, the console version
of the program. GNOME and KDE use
completely different APIs on top of the X
Window Library, or so called Xlib.

2.b GNOME implementation
GNOME was built on top of the GTK+ (or

GIMP Toolkit) which is completely written in C.
GTK is based on the GLIB library which
implements and redefines some GLIBC functions
and types and gives easier and friendlier API.
Luckily there is a great tool, Anjuta IDE. GNOME
implementation was completely written in it.
Interface designer Glade was used to produce an
UI. Program supports GNU gettext package by
which it can easily be translated to any language.
Main source file contains the callbacks which are
triggered when user interacts with the UI. New
thread is created per entry, just like in Windows.
Maximum number of threads that can be created is
100 per process. This limitation was set because we
did not want to create to resource demanding
program and to produce bugs that are hard to trace.
Lightping library was implemented as a shared
library. All functions in the library are called from
the thread’s core stack. When the thread starts new
window opens and shows the progress, as well as
the TTL and round trip times. This window can be
hidden (useful when there are many hosts in the
list) and user can change its background and
foreground colors. User can choose to
automatically end running threads on exit, save
and/or reload last used list on startup and to define
how main times to send echo requests. Program is
small and versatile and its beta version was very
stable on the GNOME 2.6 platform from the SuSE
9.2 Professional distribution, as well as on the
Debian Unstable Sid 3.0.1.

2.c KDE implementation
With KDE there is different approach. KDE is

based on the Trolltech Qt library and has been
built on top of it. Qt library was written in C++
and has wide range of classes; from low level and
utility classes to widget and interface parts of
various kinds.

KDE application was developed using one of
the best IDEs I have ever worked with –
KDevelop. The interface part was designed with
Qt Designer from Trolltech. It was easier to
implement it than with Glade, and SIGNAL
SLOT mechanism is easier to use and understand
then the GTK+ callbacks, (one has to write fewer
lines of source code thanks to the `uic` compiler).
The only thing I do not like is Qt Designer’s
implementing of slots. One have to subclass the
*.ui.h file to get the actual implementation of the

signal handlers and the *.cpp file which can be
compiled (it’s not that annoying once you get
used to it). KDE application can be translated
easily to (it uses i18n function versus to GTK _
macro). KDE applications look nicer, and can be
really an eye candy, because of the superior
rendering engine and presence of many window
styles and themes. There are two main source
files. First one contains KMainWindow class and
defines it.

Fig. 3. KDE Interface

Fig. 4. Console implementation

The second one contains implementation of
the central widget (all actual work gets done
here). Similar to GNOME application, new
thread is created per entry and maximum number
of threads per process is 100. User can choose
whether to show ping progress and other useful
options. When the thread start progress window
pops up and shows progress. When entire pinging
process is done report is created and displayed
showing TTL, and round trip times. Ping list can
be saved or retrieved from a file, which is very
useful if user wants to check hosts or his local
area network, or his other favorite host list.
Program is a bit more larger then the GNOME
implementation it haven’t crashed so far and has
been tested on KDE 3.3 and KDE 3.4 from the

 VIII-3

mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu
mailto:goran.vujacic@vzs.edu.yu

XVII INTERNATIONAL SCIENTIFIC CONFERENCE “TRANSPORT 2007”

For KDE application to compile you need Qt
version 3.3 and above and at least KDE 3.3.
There are no special requirements on the
Windows platform, but I’m not sure how this
library works on the Win9x.

Library itself and console application do not have
any special requirements, they have been
successfully compiled on both platforms and have
been thoroughly and heavily tested. This library is
just a part of another, larger software project which is
currently under development and will have ICMP
functions library as a plug-in module.This project is
primarily developed for the Linux platform,
following the Open source philosophy.

SuSE 9.2 Professional distribution, as well as on
the Debian Unstable Sid 3.0.1.

2.d Console implementation
Console implementation was the easiest part

of the implementation.
Program was written in C in ViM editor and

compiled with GCC, linking the ligthping library.
Only problem which existed was passing long list
of hosts which were going to be checked on the
command line. This problem was solved by the
means of implementing a pipe (forking the parent
process), so one can easily write a command `cat
./myhostlist > lightping`.Of course this program has
the smallest file size, because it has no UI, it is very
fast and convenient to be used in shell scripts. It
worked very stable and had a few minor bugs that
were successfully fixed. It was tested on the SuSE
9.2 and Debian Unstable Sid 3.0.1.
3. DEPLOYMENT AND VARIOUS
CHARACTERISTICS

Even though this projects is open source it has
some limitations depending on the interface
implementation used:

On the windows platform it is because of the
Delphi, which is not free tool; it is commercial
software licensed from Borland Corporation.

On the KDE platform GPL + Qt license apply
(basically Qt license is free for the open source
programs).

On the GTK/GNOME platform program is
completely under the GPL.

Every platform has some advantages and
disadvantages. To be able to run a program one
must have root permission or have the program
installed as suid root on the Linux platform. This
is because of the raw sockets. There is no such
limitation on Windows; every standard user
account can be used to run the program.On
Windows Icmp functions are implemented in the
icmp.dll library and can not be used for fine-
tuning and reimplementation.Furthermore GTK
framework does not allow program to have setuid

root. If this is the case GTK refuses to initialize
and quits. I’ve solved this using a pipe as a mean
of transferring data from the library and
backwards.There are installation problems (on
Linux platform), too.If you are trying to compile
the library in the GNOME environment you need
to have libgnome, libkeyring and libgtk2
development packages, as well as other GNOME
development files.

REFERENCES:
[1] http://www.openview.hp.com/
[2] http://www.nagios.org/
[3] http://nsclient.ready2nin.nl/
[4] http://www.net-snmp.org/
[5] http://people.ee.ethz.ch/~oetiker/
 webtools/mrtg/
[6] http://www.gnokii.org/
[7] GNU C Compiler
[8] GNOME Interface
[9] Bloodshed Dev C++ which is
 based on the Mingw
[10] Microsoft Native C/C++
 compiler Bloodshed Dev C++ which
 is based on the Mingw project
[11] ICMP protocol
[12] RFC 793 and 1791
[13] SuSE 9.2.

LAN ИЛИ WAN МРЕЖИ, ИЗПОЛЗВАЩИ –БИБЛИОТЕКИ НАПРЕЧНИ ПЛАТФОРМИ,
ОТВОРЕН ИЗТОЧНИК И ИНТЕРФЕЙС ICMP

Горан Вуячич, Любомир Лукич
Горан Вуячич, Висше железопътно училище, 11000-Белград,

д-р Любомир Лукич, Машинен факултет в Кралево,
СЪРБИЯ

Резюме: Днес, когато компютърните мрежи се разрастват организационно и като
инфраструктурна сложност, е важно да се наблюдава наличието, мрежовите характеристики,
използваемостта и пренасянето на данни между различния мрежови хардуеър, сървърите на мрежите
и работните устройства на крайните потребители и всичко това да е в полза на скоростта,
качеството и накрая бизнеса.

Ключови думи: ICMP, напречна платформа, мрежова библиотека.

 VIII-4

