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Abstract: During recent years it has been increasing interest on the phenomena of
chaos in gyroscopic systems. It is well-known that depending on the speed of rotation, a
gyroscopic system may lose or gain stability. Despite the overwhelming number of studies
reporting the occurrence of various chaotic structures, there is yet little known about
construction details and generality of underlying bifurcation scenarios which gives rise to
such chaotic (complex) behavior.

Here, we report a detailed analytical and numerical investigation of the abundance of
regular and chaotic behavior for rigid body (gyrostat) motion. The model contains 6
parameters that may be tuned to produce rich dynamical scenarios. Our results suggest that
the heteroclinic structures with two, three, four and five fixed points from type saddle-focus
occur.

1. Introduction

Modeling is a powerful tool in the simulation of processes in physics and technics
dealing with different time and spatial scales, and in mechanical characterization of system
parameters. It is also effective in the interpretation and design of experiments, as well as in
the prediction of new effects and phenomena. It is clear that modeling would play an
increasing role in improving our understanding of the physical processes in mechanical
systems, under normal and abnormal conditions.

In an array of great discoveries in the twentieth century, three of them certainly belong
to physics: 1) the theory of relativity of Albert Einstein (without ignoring the great merit of
Henri Poincaré); 2) quantum mechanics, associated with a large number of scientists from
different countries and 3) chaos theory, associated mostly with the name of the American
theorist Edward Lorenz, a meteorologist. Again, Henri Poincaré has a contribution to its
development, and later many scholars, the list of whose names cannot fit several dozen pages.
It will be only mentioned that the first to use the word chaos in its modern understanding in
science are Li and Yorke in 1975 [16], and that the authors of the concept of the strange
attractor are Ruelle and Takens in 1971 [17].

There has been a large amount of recent interest in the investigation of gyroscope
dynamics. The gyroscope has attributes of great utility to navigational and aeronautical
engineering, biology, optics and et al. [7-11, 14]. Different types of gyroscope (with linear or
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nonlinear damping, fluid, et al.) are investigated for predicting the dynamic responses such as
regular and chaotic motions [4, 12, 13].

Dissipative systems are a special class of dynamical systems. In general, dissipative
mechanical systems in more than two dimensions have bounded and unbounded orbits
depending on the energy. The bounded trajectories of these systems does not converge to an
equilibrium point nor to a periodic or quasi-periodic orbit. In this case the flow is essentially
aperiodic. A dynamical system is dissipative, if its phase volume contracts continuously, i.e.
D, <0(i=1,..,n). Only dissipative dynamical systems have attractors.

Attractors are the adequate mathematical (geometrical) representations of time order
and chaos that can be: stable equilibria, stable periodic motions (auto-waves) or strange
attractors. Mathematical representations of spatial order and chaos are saddle equilibria,
saddle periodic movements or complex saddle invariant sets.

It is well-known that a heteroclinic cycle is a sequence of trajectories connecting a set
of fixed points in a topological circle. A classical heteroclinic cycle is a loop that consist of
saddle equilibrium states connected to one another by their separatrices. The special case of a
cycle consisting of one trajectory and one fixed point is usually called a homoclinic trajectory
[19, 20].

A homoclinic trajectory f(x,t) (or a homoclinic (separatrix) loop) is such that the
‘inset’ to a fixed point of an attractor, x,, is the same as the ‘outset’ from the same point. It
obeys the rule that f(x,z)— x, for 1 — oo, t — —eo [21]. According to Peixoto’s theorem [22,

23], homoclinic bifurcations are structurally unstable and are therefore destroyed by small
perturbations. Consequently, they are more difficult to identify than local bifurcation, because
knowledge of the global properties of the phase space trajectories is required. Around a
saddle-focus equilibrium a systematic characterization of homoclinicity was provided by
Shilnikov [24]. In this scenario, reinjection occurs along a well-defined vector associated with
a real system eigenvalues, with ejection from the vicinity of the equilibrium subsequently
effected on a spiral path located on a transverse plane. A necessary condition for this

A7)

leading eigenvalues. Here we note that y, determining the rate of approaching and g,

determining the rate of leaving the stable point. If thus Shilnikov condition is satisfied, an
infinite number of nonperiodic trajectories coexist in the vicinity of a homoclinic trajectory
bi-asymptotic to the saddle-focus.

mechanism is that the saddle-focus index ¢ = <1, where y, and y, are the

A nice example is the Lorenz system [18], which has an important historical relevance
in the development of chaos theory. Now this system is considered as a paradigmatic example
of a chaotic system [1]. If Vx take both positive and negative values then this system is

adaptive. Rigid bodies are bodies that cannot deform and change their shape, but the can
translate and rotate. In [2], Neimark and Landa suggested that the Lorenz system admit a
purely mechanical model of two rigid bodies- a lifting and the lifted axi-symmetric rotors.
The system has the following property: when the rotor moves relative to the lifting body then
the distribution mass remains unaltered in the space. Thus, the tensor of the system is constant
and such a system is called gyrostat (see Figure 1). Further, it is assumed that its center of
mass is fixed, and that the ellipsoid of inertia has the form of a rotation ellipsoid.
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Figure 1. Two bodies - a lifting and lifted axi-symmetric rotor.

In case of small angular velocities, the motion of the system can be presented from the
following differential equation [3,4]:

(1) M =M x AM + BM,

where M is the vector of kinematical moment about the coordinate system of the rigid body,
A=1"=diag(a,, a,, a;) (Where I is the inertial tensor) and B is constant matrix. For

dissipative case, i.e. div<0, the condition 7rB <0 is valid. In [5] for specific values of
system parameters it is shown that two attractors have place. It is well known that system (1)
has two particular cases: (i) those of Greenhill and (ii) Klein & Sommerfeld [6]. In these two
cases the trajectories lie in integral surfaces. For some complicated cases, system (1) has two
strange attractors.

According to Figure 1, the system (1) can be written in the form

M, =cM, +M,+c,M,M,
(2) M2=—Ml—CSM2+C4M1M3,

M,=cM,-cMM,.

In general, the investigation of such a model would start with the computation of steady
states. The equilibrium (steady state) points of the system (2) are found by equating the right-
hand sides of (2) to zero. Thus, it is easy to see that equilibrium points of the system (2) are

(3) Oi: M,=M,=M,=0, firstfixed point
- 1 - c,C M? - c M?
My == M| 1+°20 2| M, =" 2, _
(4) o . G Gl 2% GCs 1 _ C2C% 2 second, third,
2,345 o M2 s 2 fourth and fifth
1~5 2

fixed points
2

2 [Cs (Cz+c4 )+ 201050405 ]v Mzz + %(1*' 0103) =0.
C5CoCo CyCoC5

M, -

Because (c, +c, ) +4c,c,c;(cic,e, +¢,)> 0, then the system (2) has fifth real fixed points- see
Figure 2a.
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Saddle-focus

Figure 2. a: Fixed points of system (2) in M;M,M; coordinates; b: fixed point from type saddle-focus with
unstable focus (complex eigenvalues with positive real part).

The divergence of the flow (2) is
oM, . oM, . oM,

5 =

©) oM, oM, oM,
The system (2) is dissipative, when D, <0, 1.e. ¢, <¢, +¢,. For example, in 1981 Leipnik and
Newton [5] found that for ¢, <0.8 the system is dissipative and all volumes in the phase

space must contract uniformly even though cross-sectional and all trajectories except those
trapped at the rest points diverge to infinity. Simulations suggest that for ¢, =0.175 the
system (2) has two strange attractors.

The paper is organized as follows: in Section 2 and 3 we present analytical and
numerical results concerning the system (2) for different values of bifurcation (control)
parameters ¢, and c, . In Section 4 we discuss and summarize our results.

=Cq —(Cl+03).

2. Qualitative analysis

In this section, we investigate the system (2), which presents an autonomous nonlinear
3D dynamical model.

Generally, in order to determine the character of fixed points (Egs. (3) and (4)) we
make the following substitutions into (2)
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(6) M, =M+w, M,=M,+w, M,=M+w,
Hence, after some transformations the system (2) has the form

w, =—c,w, +bw, +b,w, +c,w,w;,
(7 w, =—bw, —c,w, +b,w, +c,ww,,

W, = =b,w, —b,w, + c,w, —c,Ww,,
where

®) b=1+c¢,M,, b,=c,M,, b,=1-c,M,,
b,=c,M,, b,=c,M,, b, =c,M,.

According to [15], the Routh-Hurwitz conditions for stability of fixed points (3) and

(4) can be written in the form

p=c+c;—c; >0,

q:q@fwg—g%+@@+@Q+m%>Q
9) r= —[65 (Clca + b1b3)_b5 (b1b4 + bzc3)+ bs (bzbs + b4cl)] >0,

R=pqg-r= (03 _CS)[cl(cl +¢ _Cs)_cscs +b4be]+b1b3(cl + Ca)+

+b,b, (¢, — ¢ )~ bbb + b,b,b, > 0.

Here the notations p,q,» and R are taken from [15]. The characteristic equation of the
system (7) (which is equivalent of system (2)) can be written as

(10) ‘v pyi+qy+r=0.
x X 4

Here we note that, the five fixed points at bifurcation parameters ¢, and/or c, are always from

type saddle-focus — negative real eigenvalue and complex eigenvalues with positive real part
(unstable focus) (see Figure 2b). These fixed points can be included in heteroclinic structures
with two, three, four and fifth equilibriums, where their invariant manifolds w* and W~
meeting each other in a most intricate manner- see Figure 3.
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Figure 3. Schemes of heteroclinic cycles from a: two saddle-focus fixed points; b: three saddle-focuses; c: four
saddle-focuses and d: fifth saddle-focuses.

A heteroclinic cycle is one of the common scenarios of the formation or death of a
limit cycle when the limit cycle emanates from or approaches the heteroclinic cycle as a
singular limit respectively [25]. There are known cases in which a unique limit cycle is born
and certain criteria can be used to determine if this cycle must be stable or unstable. In our
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case here, the known results are not applicable, and we are forced to use numerical
simulations and specific features of our system.

3. Numerical analysis

In the previous section, we obtained and shown some analytical results that we shall
use in our numerical analysis in the system (2). According to [5, 26] the corresponding values
of the dimensionless parameters ¢, + ¢, are

(11) ¢, €[0.4,09] ¢, =10, ¢, €[0.4,09] ¢, =5 ¢ <[0,09] ¢, =5.

In order compare the predictions with numerical results, the governing equations of
system (2), were solved numerically using MATLAB [27]. The initial conditions for all
simulations are (0.349, 0, -0.16) or (0.349, 0, —0.18).

Figure 4 shows the bifurcation diagram for system (2): values of A, coordinate,
(Mz)n, are plotted against ¢, regarded as a continuously varying bifurcation (control)
parameter. In this case the heteroclinic structure like to those in Figure 3b, 3c or 3d.We see
that at ¢, [0.175, 0.2]the system (2) has chaotic solution. It is interesting to note that after
c; = 0.2 (till the end of the interval) the inverse bifurcations occur and the system passes from

chaotic regime to regular one. It is seen also that two symmetrical regular branches take place.
We conclude also that an apparent sudden collapse in the size of a chaotic attractor occurs at a
value of the control parameter ¢, =0.179. Such a sudden qualitative change in a chaotic

attractor is known as interior crisis.

(M, )oa
0.3 F el

I

0.1

Figure 4. Bifurcation diagram (M ) )n versus ¢ generated by computer solutions of the system (2) computed
with the parameters: ¢, =¢, =04, ¢, =10, ¢, =5, ¢, €[0.01, 0.78], ¢, =5.

In Figure 5, the bifurcation diagram of system (2) (as ¢, € [0.4, 0.88] ) is shown. It can
be seen at ¢ >0.42 chaotic solution with two strange attractors occurs. In this case
heteroclinic structure from Figure 3a is valid.
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Figure 5. Bifurcation diagram (M 5 )n versus ¢, generated by computer solutions of the system (2) computed
with the parameters: ¢, €[0.4,0.88], ¢, =0.4, ¢, =10, ¢, =5, ¢, =0.175, ¢, =5.

4. Summary and conclusions

An important feature of robust heteroclinic cycles is that they may attract nearby
dynamics. What happens when a cycle loses stability? Such bifurcation may lead to the
appearance of long period periodic orbits, other heteroclinic cycles, and more complicated
dynamics.

The present paper studies how the dynamics and global behavior of system (2) vary,
when we keep ¢, =10, ¢, €[0.4,0.9], ¢, =5 ¢, =5 and change ¢, and ¢,. We focused

our estimations on the bifurcation behavior, route to chaos and occurrence of heteroclinic
structures (cycles). Our results suggest that the system (2) has (i) fifth unstable fixed points
from type saddle-focus; (ii) heteroclinic structures including two, three, four and five fixed
points. In the case when the system has two strange attractors, two heteroclinic structures
including two fixed saddle-focuses take place.
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Knwuoseu oymu: dwcupocmam, XaomuyHo nogeodeHue, YUCIeH AHAIU3, Ka4ecmeeH
aumanus

Peztome: [lpe3 nocreonume 200uHu 6 HAYYHAMA aumepamypa ce 3a0ena3ea 3acuien
uHmepec KoM U3yuasane Ha NOsiAmMa HA Xaoc 8 HUpockonuunu cucmemu. /lo ceza e 0obpe
U38eCMHO, 4e 8 3A8UCUMOCT OM CKOPOCMMA HA 8bpmeHe, eOHAd HCUPOCKONUYHA CUCmemd
Modice 0a e 8 YCMOU4UuBo UaU HEYCMOUuU8o CbCcmosHue. Bwnpexu oepomnus 0Opoti
cvbuecmsysauy HayyHu NyOIUKAyul C8bP3aHu ¢ U3C1e08AHemoO HA NoA6AMA HA pPA3IUYHU
XAOMUYHU CMPYKMypu, 00 ce2a MHO20 MAJIKO ce 3HAe 3a KOHCMPYKYUOHHUMe Oematiiyu npu
nosA6AMA HA PA3IUYHU XAOMUYHU CMPYKMYPU, KAKMO U 3a OugypxayuonHume cyeHapuu
npeou3BUKBAWU CJLONCHO (XAOMUUHO) NoGedeHUe.

B moea nawe uzcireosamne Hue uzevpuigame NOOPOOHO AHATUMUYHO U YUCAEHO
u3yyasame HAa Bb3HUKBAHEMO HA PecyNAPHO U XAOMUYHO NOBeOeHUue HA OBUINCEHUEmO Ha
mevpOo M0 ¢ eOHa Henod8UNCHA mouka (dHcupocmam). Mzcrnedsanusm mooen cvowvpisca 6
KOHCMAHMU, C 6apupamemo (U3MeHeHUuemo) Ha Koumo modce 0a ce NOLYYAMm pPA3TUYHU
OuHamuunu cyenapuu. Om Hawiume pe3yimamu ce 8uxcod, e ce nosA8A8am XemepokiuHU4HU
CMPYKmMypu ¢ 08e, mpu, 4emupu u nem QuUKCUpanu mouku om uo ceonio-poxyc.
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