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Abstract: During recent years it has been increasing interest on the phenomena of 

chaos in gyroscopic systems. It is well-known that depending on the speed of rotation, a 
gyroscopic system may lose or gain stability. Despite the overwhelming number of studies 
reporting the occurrence of various chaotic structures, there is yet little known about 
construction details and generality of underlying bifurcation scenarios which gives rise to 
such chaotic (complex) behavior. 

Here, we report a detailed analytical and numerical investigation of the abundance of 
regular and chaotic behavior for rigid body (gyrostat) motion. The model contains 6 
parameters that may be tuned to produce rich dynamical scenarios. Our results suggest that 
the heteroclinic structures with two, three, four and five fixed points from type saddle-focus 
occur. 

 
1. Introduction 
 Modeling is a powerful tool in the simulation of processes in physics and technics 
dealing with different time and spatial scales, and in mechanical characterization of system 
parameters. It is also effective in the interpretation and design of experiments, as well as in 
the prediction of new effects and phenomena. It is clear that modeling would play an 
increasing role in improving our understanding of the physical processes in mechanical 
systems, under normal and abnormal conditions. 

In an array of great discoveries in the twentieth century, three of them certainly belong 
to physics: 1) the theory of relativity of Albert Einstein (without ignoring the great merit of 
Henri Poincaré); 2) quantum mechanics, associated with a large number of scientists from 
different countries and 3) chaos theory, associated mostly with the name of the American 
theorist Edward Lorenz, a meteorologist. Again, Henri Poincaré has a contribution to its 
development, and later many scholars, the list of whose names cannot fit several dozen pages. 
It will be only mentioned that the first to use the word chaos in its modern understanding in 
science are Li and Yorke in 1975 [16], and that the authors of the concept of the strange 
attractor are Ruelle and Takens in 1971 [17]. 
 There has been a large amount of recent interest in the investigation of gyroscope 
dynamics. The gyroscope has attributes of great utility to navigational and aeronautical 
engineering, biology, optics and et al. [7-11, 14]. Different types of gyroscope (with linear or 
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nonlinear damping, fluid, et al.) are investigated for predicting the dynamic responses such as 
regular and chaotic motions [4, 12, 13]. 
 Dissipative systems are a special class of dynamical systems. In general, dissipative 
mechanical systems in more than two dimensions have bounded and unbounded orbits 
depending on the energy. The bounded trajectories of these systems does not converge to an 
equilibrium point nor to a periodic or quasi-periodic orbit. In this case the flow is essentially 
aperiodic. A dynamical system is dissipative, if its phase volume contracts continuously, i.e. 

 niDi ...,,10  . Only dissipative dynamical systems have attractors.  

 Attractors are the adequate mathematical (geometrical) representations of time order 
and chaos that can be: stable equilibria, stable periodic motions (auto-waves) or strange 
attractors. Mathematical representations of spatial order and chaos are saddle equilibria, 
saddle periodic movements or complex saddle invariant sets. 
 It is well-known that a heteroclinic cycle is a sequence of trajectories connecting a set 
of fixed points in a topological circle. A classical heteroclinic cycle is a loop that consist of 
saddle equilibrium states connected to one another by their separatrices. The special case of a 
cycle consisting of one trajectory and one fixed point is usually called a homoclinic trajectory 
[19, 20]. 
 A homoclinic trajectory  txf ,  (or a homoclinic (separatrix) loop) is such that the 

‘inset’ to a fixed point of an attractor, 0x , is the same as the ‘outset’ from the same point. It 

obeys the rule that   0, xtxf   for  tt ,  [21]. According to Peixoto’s theorem [22, 

23], homoclinic bifurcations are structurally unstable and are therefore destroyed by small 
perturbations. Consequently, they are more difficult to identify than local bifurcation, because 
knowledge of the global properties of the phase space trajectories is required. Around a 
saddle-focus equilibrium a systematic characterization of homoclinicity was provided by 
Shilnikov [24]. In this scenario, reinjection occurs along a well-defined vector associated with 
a real system eigenvalues, with ejection from the vicinity of the equilibrium subsequently 
effected on a spiral path located on a transverse plane. A necessary condition for this 

mechanism is that the saddle-focus index 1Re
1

2 




 
 , where 

1
  and 

2
  are the 

leading eigenvalues. Here we note that 
1

  determining the rate of approaching and 
2

  
determining the rate of leaving the stable point. If thus Shilnikov condition is satisfied, an 
infinite number of nonperiodic trajectories coexist in the vicinity of a homoclinic trajectory 
bi-asymptotic to the saddle-focus. 
 
 A nice example is the Lorenz system [18], which has an important historical relevance 
in the development of chaos theory. Now this system is considered as a paradigmatic example 
of a chaotic system [1]. If 

i
x  take both positive and negative values then this system is 

adaptive. Rigid bodies are bodies that cannot deform and change their shape, but the can 
translate and rotate. In [2], Neimark and Landa suggested that the Lorenz system admit a 
purely mechanical model of two rigid bodies- a lifting and the lifted axi-symmetric rotors. 
The system has the following property: when the rotor moves relative to the lifting body then 
the distribution mass remains unaltered in the space. Thus, the tensor of the system is constant 
and such a system is called gyrostat (see Figure 1). Further, it is assumed that its center of 
mass is fixed, and that the ellipsoid of inertia has the form of a rotation ellipsoid.  
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Figure 1. Two bodies - a lifting and lifted axi-symmetric rotor. 

In case of small angular velocities, the motion of the system can be presented from the 
following differential equation [3,4]: 
 

(1)     ,BMAMMM   
 

where M is the vector of kinematical moment about the coordinate system of the rigid body, 
 321

1 ,, aaadiagIA    (where I is the inertial tensor) and B is constant matrix. For 

dissipative case, i.e. 0div , the condition 0TrB  is valid. In [5] for specific values of 
system parameters it is shown that two attractors have place. It is well known that system (1) 
has two particular cases: (i) those of Greenhill and (ii) Klein & Sommerfeld [6]. In these two 
cases the trajectories lie in integral surfaces. For some complicated cases, system (1) has two 
strange attractors. 
 According to Figure 1, the system (1) can be written in the form 
 

(2)     

.

,
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In general, the investigation of such a model would start with the computation of steady 
states. The equilibrium (steady state) points of the system (2) are found by equating the right-
hand sides of (2) to zero. Thus, it is easy to see that equilibrium points of the system (2) are 
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Because     04 4321321
2

42  ccccccccc , then the system (2) has fifth real fixed points- see 

Figure 2a. 

O

X 
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second, third, 
fourth and fifth 

fixed points 
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Figure 2. a: Fixed points of system (2) in M1M2M3 coordinates; b: fixed point from type saddle-focus with 

unstable focus (complex eigenvalues with positive real part).  
 
The divergence of the flow (2) is 

(5)     315
3

3

2

2

1

1
3 ccc
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The system (2) is dissipative, when ,03 D  i.e. .315 ccc   For example, in 1981 Leipnik and 

Newton [5] found that for 8.0
5
c  the system is dissipative and all volumes in the phase 

space must contract uniformly even though cross-sectional and all trajectories except those 
trapped at the rest points diverge to infinity. Simulations suggest that for 175.0

5
c  the 

system (2) has two strange attractors. 
  The paper is organized as follows: in Section 2 and 3 we present analytical and 
numerical results concerning the system (2) for different values of bifurcation (control) 
parameters 

1
c  and 

5
c . In Section 4 we discuss and summarize our results. 

 
2. Qualitative analysis 
 In this section, we investigate the system (2), which presents an autonomous nonlinear 
3D dynamical model.  
 Generally, in order to determine the character of fixed points (Eqs. (3) and (4)) we 
make the following substitutions into (2) 
 

(b) 

Saddle-focus 

O5 

O1 

O4 

O2 
O3 

(a) 



0-5 

(6)    .,, 3
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Hence, after some transformations the system (2) has the form 
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 According to [15], the Routh-Hurwitz conditions for stability of fixed points (3) and 
(4) can be written in the form 
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Here the notations rqp ,,  and R  are taken from [15]. The characteristic equation of the 
system (7) (which is equivalent of system (2)) can be written as 
 

(10)    .023  rqp   
 

Here we note that, the five fixed points at bifurcation parameters 
1

c  and/or 
5

c  are always from 

type saddle-focus – negative real eigenvalue and complex eigenvalues with positive real part 
(unstable focus) (see Figure 2b). These fixed points can be included in heteroclinic structures 
with two, three, four and fifth equilibriums, where their invariant manifolds W  and W  
meeting each other in a most intricate manner- see Figure 3.  



0-6 

 
 

 
 
Figure 3. Schemes of heteroclinic cycles from a: two saddle-focus fixed points; b: three saddle-focuses; c: four 

saddle-focuses and d: fifth saddle-focuses. 
 
 A heteroclinic cycle is one of the common scenarios of the formation or death of a 
limit cycle when the limit cycle emanates from or approaches the heteroclinic cycle as a 
singular limit respectively [25]. There are known cases in which a unique limit cycle is born 
and certain criteria can be used to determine if this cycle must be stable or unstable. In our 
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case here, the known results are not applicable, and we are forced to use numerical 
simulations and specific features of our system. 
 
3. Numerical analysis 
 In the previous section, we obtained and shown some analytical results that we shall 
use in our numerical analysis in the system (2). According to [5, 26] the corresponding values 
of the dimensionless parameters 

61
cc   are 

 

(11)        5,9.0,0,5,9.0,4.0,10,9.0,4.0 654321  cccccc . 
 

In order compare the predictions with numerical results, the governing equations of 
system (2), were solved numerically using MATLAB [27]. The initial conditions for all 
simulations are   16.0,0,349.0    or   18.0,0,349.0  . 

 Figure 4 shows the bifurcation diagram for system (2): values of 2M  coordinate, 

 nM 2 , are plotted against 
5

c  regarded as a continuously varying bifurcation (control) 

parameter. In this case the heteroclinic structure like to those in Figure 3b, 3c or 3d.We see 
that at  2.0,175.05 c the system (2) has chaotic solution. It is interesting to note that after 

2.05 c  (till the end of the interval) the inverse bifurcations occur and the system passes from 

chaotic regime to regular one. It is seen also that two symmetrical regular branches take place. 
We conclude also that an apparent sudden collapse in the size of a chaotic attractor occurs at a 
value of the control parameter 179.0

5
c . Such a sudden qualitative change in a chaotic 

attractor is known as interior crisis.  

 
 

Figure 4. Bifurcation diagram   nM 2   versus 5c  generated by computer solutions of the system (2) computed 

with the parameters: .5],78.0,01.0[,5,10,4.0 654231  cccccc  
 

In Figure 5, the bifurcation diagram of system (2) (as  88.0,4.01 c  ) is shown. It can 

be seen at 42.0
1
c  chaotic solution with two strange attractors occurs. In this case 

heteroclinic structure from Figure 3a is valid.  

 nM 2  

5c  
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Figure 5. Bifurcation diagram   nM 2  versus 1c  generated by computer solutions of the system (2) computed 

with the parameters: .5,175.0,5,10,4.0],88.0,4.0[ 654231  cccccc  
 
4. Summary and conclusions 
 An important feature of robust heteroclinic cycles is that they may attract nearby 
dynamics. What happens when a cycle loses stability? Such bifurcation may lead to the 
appearance of long period periodic orbits, other heteroclinic cycles, and more complicated 
dynamics. 

The present paper studies how the dynamics and global behavior of system (2) vary, 
when we keep   5,5,9.0,4.0,10 6432  cccc  and change 

1
c  and 

5
c . We focused 

our estimations on the bifurcation behavior, route to chaos and occurrence of heteroclinic 
structures (cycles). Our results suggest that the system (2) has (i) fifth unstable fixed points 
from type saddle-focus; (ii) heteroclinic structures including two, three, four and five fixed 
points. In the case when the system has two strange attractors, two heteroclinic structures 
including two fixed saddle-focuses take place. 
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ИЗСЛЕДВАНЕ НА КОМПЛЕКСНОТО ДВИЖЕНИЕ НА ТВЪРДО 
ТЯЛО 
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БЪЛГАРИЯ 
 

Ключови думи: жиростат, хаотично поведение, числен анализ, качествен 
анализ 

Резюме: През последните години в научната литература се забелязва засилен 
интерес към изучаване на появата на хаос в жироскопични системи. До сега е добре 
известно, че в зависимост от скоростта на въртене, една жироскопична система 
може да е в устойчиво или неустойчиво състояние. Въпреки огромния брой 
съществуващи научни публикации свързани с изследването на появата на различни 
хаотични структури, до сега много малко се знае за конструкционните детайли при 
появата на различни хаотични структури, както и за бифуркационните сценарии 
предизвикващи сложно (хаотично) поведение. 
 В това наше изследване ние извършваме подробно аналитично и числено 
изучаване на възникването на регулярно и хаотично поведение на движението на 
твърдо тяло с една неподвижна точка (жиростат). Изследваният модел съдържа 6 
константи, с варирането (изменението) на които може да се получат различни 
динамични сценарии. От нашите резултати се вижда, че се появяват хетероклинични 
структури с две, три, четири и пет фиксирани точки от вид седло-фокус. 
 


