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Abstract: The hunting movement of the railway vehicles is a transversal oscillation of the bodies of
the system coupled with a rotation around the vertical axis. The causes are the conicity of the wheels
and the fact that they are rigidly mounted on the axle [1]. This oscillation may occur even on a
hypothetic perfect track and endangers the running safety. The model which describes this
phenomenon is nonlinear and therefore analytical expressions of the amplitudes may not be obtained.
In this paper we deduce an approximate analytical expression of the solution by means of the
mediation theorem.
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INTRODUCTION

The superposition of lateral and rotational
vibration of a railway vehicle axle in a straight,
uniform motion, caused by a short time
perturbation gives rise to a resulting oscillation
known as the hunting phenomenon.

The loss of control of this phenomenon by an
unstable evolution is important for running safety
and for the comfort of the vehicles.

The study of the hunting is possible with the
aid of linear and nonlinear models. The linear
models may be used to get some information
regarding the stability of the straight, uniform
motion of the vehicle. The analysis of the
amplitudes and stability of the hunting may be
carried out only with nonlinear models. The
problem is that the nonlinear systems are more
difficult to study.

In this paper we build a model of study for the
axle which may be solved by means of the
mediation theorem in order to obtain approximate
analytical solutions.

THE EQUATIONS OF MOTION

The physical model of the structure used to
study the hunting phenomenon consists of two
wheels with a certain rolling profile, rigidly
mounted on an axle whose bearings are fastened
by the vehicle with elastic elements. In fig.1 we
present this model in a plane co-ordinate systems.
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Fig.1: The model consists of two wheels
with a certain rolling profile, rigidly mounted on
an axle whose bearings are fastened by the vehicle
with elastic elements

We shall consider that the transversal sections
of the wheels and of the rails are quarters of
circles (fig.2).
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Fig.2: We shall consider that the transversal
sections of the wheels and of the rails are quarters
of circles
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The equations of the profiles are:

2
21, (y)= 4|12 —(y%} (1)
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The equations describe the left wheel (1) and,
respectively, the right wheel (2) where y is the
transversal displacement of the axle. The
parameter » is specific to the profile. (the
curvature radius).

We shall determine some geometric properties
of the contact point by means of expanding their
expressions in Taylor series.

The difference between the rolling radiuses of
the two wheels is
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We denote with vy,, (i=1,2) the angle of the
profile in the contact point on the two wheels. In
order to calculate the centering force we use the
relation:
dz,, dz,,

ct=(tgy, —tgy, ) y=—L w2
(tgy, —tgy,)/y R
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where v is the forward speed, Q is the load on the
wheel, | the distance between the wheels, b the
distance between the suspension springs, y the
friction coefficient, my and Iy, are the mass and
the inertia moment of the axle.

ANALYTICAL APPROXIMATE
SOLUTIONS OF THE EQUATIONS OF
MOTION USING THE AVERAGING
THEOREM

We give an approximate analytical solution of
the equations (5) using the averaging theorem.
We look for the limit cycles among the periodical
solutions of the system (5) following the
algorithm proposed by Van der Pol [2].

Looking for this purpose we start with a
change of functions and co-ordinates:

q, =A,(t)cosb+B, (1)sin® (n=12) (6)

where A,, B, are unknown functions, ® is a
constant that should be determined, 6 = ®-t and

@ )'=@ v

Supposing that the functions A, and B, have a
slow variation it follows that

A, cos0+B, sinb=0 @)

In this case the rate of change of the solutions

is:
q, ® —A,0sin0+ B, ,wcosO (8)
The relations (8) may be used together with the

equations (5) in order to obtain a system of four
first order differential nonlinear equations with

(4)  the unknown functions A, and B, . From the
2 2 n n -
= 16\/3(9r :16}’ ) equations (6- 8) and (5) we deduce the system:
81r
cos 0 sin© 0 0
By means of the equation (3) we calculate the o= 0 0 cosO sin®
creep and then we determine the friction forces —m,0sin® mywcosd 0 0
between the wheels and the rails. 0 0 — 1,080 I ,cos0
In this case the equations which describe the
motion of the wheel set are:
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where:
by =m0’ (A, cos®+ B, sin0)+

+@w(A1 sin® — B, cos0) —
v

—Cyy (A cosO+B;sin0) -

—Cpy (A cos0+B, sin0)’ +
+2xQ(A, cos0+ B, sin0)

b, =1,,0° (A, cos®+B, sin0) +

2¢?xQ

(10)

+ ®(A,sin®—B, cos0)—
—2e’cx(A, cosO+ B, sin ) —

- 2er@(A1 cos0 + B, sin0) —
r

— Zerd—m(Al cos0 + B, sin0)*
r

where
¢y, =16/9-3"/r-Q

Chy =16/81-3"2-16/r -Q
dr, =2/27-3"%.9
dr, =2/27-3"%.8/r?

We apply the averaging theorem associating to
the equations (9) a system given by the relations:

2n

A =1 [ Ginoado
2o ¢ my
o 2n
B, =+L Ecos@d@
2mo { my
_ 2, (1)
Ay = [ 25 sinodo
2no 5 1,
2n
2 =ij—400s6d6
2o ¢ 1,

We shall use the denotation:

In these conditions, the mediate system (11)
becomes:

27
R=ef@="[f0)  (14)
0

for which we can obtain the stationary solutions.
If y<<1 the relation between the stationary

solution of (14) and the periodical solutions of
(13) is given by the averaging theorem [3]:

If y<<1, f continuous of class r, r>1,
bordered on a bordered domain, and p, is a

hyperbolic fixed point for the averaged system,
then (13) has a unique periodical solution py of
the same stability with p.

We notice that the system (14) is autonomous
which helps solving the problem. More than that,
the information about the periodical solutions of
the nonlinear system (5) will be given by the
study of the fixed points of the system (11).

The mediate system (11) has four equations
with four unknown functions A,, B, and an
unknown constant T.

Without restricting the generality of the
solution, we shall translate the time origin of our
co-ordinate system so that q;(0) = 0 and in
consequence B; = 0.

Integrating the system (11) we obtain the
equations (15) which give the stationary solutions
(fixed points) of the mediate system:

0wA, +vB, =0

4(me? —c,, JA, +8kQA, —3c, A} =0
2 2
N0 ec 1
A, + ~——|B, =0
2 (cozl 2] ?

vol
3 3 1 2
—KQeVdI‘lAl—ZKQeVdI]Al + Elco -

(15)

—e’c, ) vrA, —e’kQarB, =0

Obtaining numerical solutions for the above
system we can plot bifurcation diagrams like the
one below fig. 3.
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x=(A},B,,A,,B,y)" (12) ul
10F
and we shall write the system (9) as: 2 e~ spﬁd IR R
bifurcation point
x =¢ f(x,0) (13) Fig. 3. Above system of diagrams
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CONCLUSIONS

The equilibrium point of the wheels is stable .

until a certain critical speed is reached. Further

the movement of the axle is oscillatory. The 2.

stable limit cycle is generated softly.
If the circulation speed decreases (under the

critical speed) the stability of the static 3.

equilibrium point is regained.
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3ATI'YBA U Bb3CTAHOBSABAHE HA CTABUJIHOCT IIOPA/IU TBKATYIHIEHE

Paszan Onpea, Kpuctuna Tynopaue

Ac. 0-p unorc. Pazean Onpea, ac. unoic. Kpucmuna Tyoopaue, Yuusepcumem ,, Ionumexnuxa” 6 Bykypeuwy,
Tpancnopmen ¢axyrimem, Kameopa ,,I[lodsusicen cocmag”, 313 Splaiul Independentei, 77206, Bykypeuy,
PYMBHUA

Peziome: Jlvkamywenemo na dmceie3onvmHume 03Uld e HANPeuHo MpenmeHe Hda meiama Ha
cucmemama, KOMOUHUPAHO ¢ @bpmeHe 0KoJ0 gepmukaiiama oc. Ilpuuunama e 6 xonerama u gpaxma,
ye me ca mevpoo moumupanu na ocma [1]. Toea mpenmene mooice 0a Gv3HUKHE OOPU 6bPXY
XunomemuuHo nep@exmen nvm u 3acmpawiaga Oezonacrocmma Ha osudceHue. Modenvm, KOUmMo
onucea moea ssieHuUe, e HelUHeeH U CIe008AMeNHO He mo2am 0d 6v0am HOAYYeHU AHATUMUYHU
uspasu 3a amnaumyoume. B mosu 0okiad uzsescoame npudiuumener AHarumuyen uspas 3a peuleHue

upesz meopema 3a nocpedﬁuqecmeo.

Knrwuosu ¢)ymu: mpenmeHe, 1bKamyutleHe, JHcele3Onvmiuu 603ujd, amnﬂumyaa.
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